Deformed Fourier models with formal parameters
Studia Mathematica, Tome 239 (2017) no. 3, pp. 201-224

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The deformed Fourier matrices $H=F_M\otimes _QF_N$ with $Q\in \mathbb T^{MN}$ produce a matrix model $C(S_{MN}^+)\to M_{MN}(C(\mathbb T^{MN}))$. When $Q\in \mathbb T^{MN}$ is generic, the corresponding fiber can be investigated via algebraic techniques, and the main character law is asymptotically free Poisson. We present an alternative point of view on these questions, using formal parameters instead of generic parameters, and analytic tools.
DOI : 10.4064/sm8580-1-2017
Keywords: deformed fourier matrices otimes mathbb produce matrix model mathbb mathbb generic corresponding fiber investigated via algebraic techniques main character law asymptotically poisson present alternative point view these questions using formal parameters instead generic parameters analytic tools

Teodor Banica 1

1
@article{10_4064_sm8580_1_2017,
     author = {Teodor Banica},
     title = {Deformed {Fourier} models with formal parameters},
     journal = {Studia Mathematica},
     pages = {201--224},
     publisher = {mathdoc},
     volume = {239},
     number = {3},
     year = {2017},
     doi = {10.4064/sm8580-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8580-1-2017/}
}
TY  - JOUR
AU  - Teodor Banica
TI  - Deformed Fourier models with formal parameters
JO  - Studia Mathematica
PY  - 2017
SP  - 201
EP  - 224
VL  - 239
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8580-1-2017/
DO  - 10.4064/sm8580-1-2017
LA  - en
ID  - 10_4064_sm8580_1_2017
ER  - 
%0 Journal Article
%A Teodor Banica
%T Deformed Fourier models with formal parameters
%J Studia Mathematica
%D 2017
%P 201-224
%V 239
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8580-1-2017/
%R 10.4064/sm8580-1-2017
%G en
%F 10_4064_sm8580_1_2017
Teodor Banica. Deformed Fourier models with formal parameters. Studia Mathematica, Tome 239 (2017) no. 3, pp. 201-224. doi: 10.4064/sm8580-1-2017

Cité par Sources :