Multidimensional Riemann derivatives
Studia Mathematica, Tome 235 (2016) no. 1, pp. 87-100

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The well-known concepts of $n$th Peano, Lipschitz, Riemann, Riemann Lipschitz, symmetric Riemann, and symmetric Riemann Lipschitz derivatives of real functions of a single variable have natural extensions to functions of several variables. We show that if a function has any of these $n$th derivatives at each point of a measurable subset of $\mathbb {R}^{d}$ then it has all these derivatives at almost every point of that subset.
DOI : 10.4064/sm8578-7-2016
Keywords: well known concepts nth peano lipschitz riemann riemann lipschitz symmetric riemann symmetric riemann lipschitz derivatives real functions single variable have natural extensions functions several variables function has these nth derivatives each point measurable subset mathbb has these derivatives almost every point subset

J. Marshall Ash 1 ; Stefan Catoiu 2

1 Department of Mathematics DePaul University Chicago, IL 60614, U.S.A.
2 Department of Mathematics DePaul University Chicago, IL 60614
@article{10_4064_sm8578_7_2016,
     author = {J. Marshall Ash and Stefan Catoiu},
     title = {Multidimensional {Riemann} derivatives},
     journal = {Studia Mathematica},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {235},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8578-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8578-7-2016/}
}
TY  - JOUR
AU  - J. Marshall Ash
AU  - Stefan Catoiu
TI  - Multidimensional Riemann derivatives
JO  - Studia Mathematica
PY  - 2016
SP  - 87
EP  - 100
VL  - 235
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8578-7-2016/
DO  - 10.4064/sm8578-7-2016
LA  - en
ID  - 10_4064_sm8578_7_2016
ER  - 
%0 Journal Article
%A J. Marshall Ash
%A Stefan Catoiu
%T Multidimensional Riemann derivatives
%J Studia Mathematica
%D 2016
%P 87-100
%V 235
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8578-7-2016/
%R 10.4064/sm8578-7-2016
%G en
%F 10_4064_sm8578_7_2016
J. Marshall Ash; Stefan Catoiu. Multidimensional Riemann derivatives. Studia Mathematica, Tome 235 (2016) no. 1, pp. 87-100. doi: 10.4064/sm8578-7-2016

Cité par Sources :