Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems
Studia Mathematica, Tome 238 (2017) no. 1, pp. 59-89

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider families of fast-slow skew product maps of the form $$ x_{n+1} = x_n+{\epsilon }a(x_n,y_n,{\epsilon }),\ \hskip 1em y_{n+1} = T_{\epsilon }y_n, $$ where $T_{\epsilon }$ is a family of nonuniformly expanding maps, and prove averaging and rates of averaging for the slow variables $x$ as ${\epsilon }\to 0$. Similar results are obtained also for continuous time systems $$ \dot x = {\epsilon }a(x,y,{\epsilon }),\ \hskip 1em \dot y = g_{\epsilon }(y). $$ Our results include cases where the family of fast dynamical systems consists of intermittent maps, unimodal maps (along the Collet–Eckmann parameters) and Viana maps.
DOI : 10.4064/sm8540-1-2017
Keywords: consider families fast slow skew product maps form epsilon y epsilon hskip epsilon where epsilon family nonuniformly expanding maps prove averaging rates averaging slow variables nbsp epsilon similar results obtained continuous time systems dot epsilon epsilon hskip dot epsilon results include cases where family fast dynamical systems consists intermittent maps unimodal maps along collet eckmann parameters viana maps

Alexey Korepanov 1 ; Zemer Kosloff 2 ; Ian Melbourne 1

1 Mathematics Institute University of Warwick Coventry, CV4 7AL, UK
2 Mathematics Institute University of Warwick Coventry, CV4 7AL, UK and Permanent address: Einstein Institute of Mathematics The Hebrew University Edmond J. Safra Campus (Givat Ram) Jerusalem 91904, Israel
@article{10_4064_sm8540_1_2017,
     author = {Alexey Korepanov and Zemer Kosloff and Ian Melbourne},
     title = {Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems},
     journal = {Studia Mathematica},
     pages = {59--89},
     publisher = {mathdoc},
     volume = {238},
     number = {1},
     year = {2017},
     doi = {10.4064/sm8540-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8540-1-2017/}
}
TY  - JOUR
AU  - Alexey Korepanov
AU  - Zemer Kosloff
AU  - Ian Melbourne
TI  - Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems
JO  - Studia Mathematica
PY  - 2017
SP  - 59
EP  - 89
VL  - 238
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8540-1-2017/
DO  - 10.4064/sm8540-1-2017
LA  - en
ID  - 10_4064_sm8540_1_2017
ER  - 
%0 Journal Article
%A Alexey Korepanov
%A Zemer Kosloff
%A Ian Melbourne
%T Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems
%J Studia Mathematica
%D 2017
%P 59-89
%V 238
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8540-1-2017/
%R 10.4064/sm8540-1-2017
%G en
%F 10_4064_sm8540_1_2017
Alexey Korepanov; Zemer Kosloff; Ian Melbourne. Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems. Studia Mathematica, Tome 238 (2017) no. 1, pp. 59-89. doi: 10.4064/sm8540-1-2017

Cité par Sources :