Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 238 (2017) no. 1, pp. 59-89
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              
We consider families of fast-slow skew product maps of the form $$ x_{n+1} = x_n+{\epsilon }a(x_n,y_n,{\epsilon }),\ \hskip 1em y_{n+1} = T_{\epsilon }y_n, $$ where $T_{\epsilon }$ is a family of nonuniformly expanding maps, and prove averaging and rates of averaging for the slow variables $x$ as ${\epsilon }\to 0$. Similar results are obtained also for continuous time systems $$ \dot x = {\epsilon }a(x,y,{\epsilon }),\ \hskip 1em \dot y = g_{\epsilon }(y). $$ Our results include cases where the family of fast dynamical systems consists of intermittent maps, unimodal maps (along the Collet–Eckmann parameters) and Viana maps.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
consider families fast slow skew product maps form epsilon y epsilon hskip epsilon where epsilon family nonuniformly expanding maps prove averaging rates averaging slow variables nbsp epsilon similar results obtained continuous time systems dot epsilon epsilon hskip dot epsilon results include cases where family fast dynamical systems consists intermittent maps unimodal maps along collet eckmann parameters viana maps
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Alexey Korepanov 1 ; Zemer Kosloff 2 ; Ian Melbourne 1
@article{10_4064_sm8540_1_2017,
     author = {Alexey Korepanov and Zemer Kosloff and Ian Melbourne},
     title = {Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems},
     journal = {Studia Mathematica},
     pages = {59--89},
     publisher = {mathdoc},
     volume = {238},
     number = {1},
     year = {2017},
     doi = {10.4064/sm8540-1-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8540-1-2017/}
}
                      
                      
                    TY - JOUR AU - Alexey Korepanov AU - Zemer Kosloff AU - Ian Melbourne TI - Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems JO - Studia Mathematica PY - 2017 SP - 59 EP - 89 VL - 238 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8540-1-2017/ DO - 10.4064/sm8540-1-2017 LA - en ID - 10_4064_sm8540_1_2017 ER -
%0 Journal Article %A Alexey Korepanov %A Zemer Kosloff %A Ian Melbourne %T Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems %J Studia Mathematica %D 2017 %P 59-89 %V 238 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8540-1-2017/ %R 10.4064/sm8540-1-2017 %G en %F 10_4064_sm8540_1_2017
Alexey Korepanov; Zemer Kosloff; Ian Melbourne. Averaging and rates of averaging for uniform families of deterministic fast-slow skew product systems. Studia Mathematica, Tome 238 (2017) no. 1, pp. 59-89. doi: 10.4064/sm8540-1-2017
Cité par Sources :
