On (conditional) positive semidefiniteness in a matrix-valued context
Studia Mathematica, Tome 236 (2017) no. 2, pp. 143-192 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

In a nutshell, we intend to extend Schoenberg’s classical theorem connecting conditionally positive semidefinite functions $F : \mathbb{R}^n \to \mathbb{C}$, $n \in \mathbb{N}$, and their positive semidefinite exponentials $\exp(tF)$, $t \gt 0$, to the case of matrix-valued functions $F \colon \mathbb{R}^n \to \mathbb{C}^{m \times m}$, $m \in \mathbb{N}$. Moreover, we study the closely associated property that $\exp(t F(- i \nabla))$, $t \gt 0$, is positivity preserving and its failure to extend directly in the matrix-valued context.
DOI : 10.4064/sm8531-7-2016
Keywords: nutshell intend extend schoenberg classical theorem connecting conditionally positive semidefinite functions mathbb mathbb mathbb their positive semidefinite exponentials exp matrix valued functions colon mathbb mathbb times mathbb moreover study closely associated property exp nabla positivity preserving its failure extend directly matrix valued context

Fritz Gesztesy 1 ; Michael Pang 2

1 Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A. and Department of Mathematics Baylor University One Bear Place #97328 Waco, TX 76798-7328, U.S.A.
2 Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A.
@article{10_4064_sm8531_7_2016,
     author = {Fritz Gesztesy and Michael Pang},
     title = {On (conditional) positive semidefiniteness in a matrix-valued context},
     journal = {Studia Mathematica},
     pages = {143--192},
     year = {2017},
     volume = {236},
     number = {2},
     doi = {10.4064/sm8531-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8531-7-2016/}
}
TY  - JOUR
AU  - Fritz Gesztesy
AU  - Michael Pang
TI  - On (conditional) positive semidefiniteness in a matrix-valued context
JO  - Studia Mathematica
PY  - 2017
SP  - 143
EP  - 192
VL  - 236
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8531-7-2016/
DO  - 10.4064/sm8531-7-2016
LA  - en
ID  - 10_4064_sm8531_7_2016
ER  - 
%0 Journal Article
%A Fritz Gesztesy
%A Michael Pang
%T On (conditional) positive semidefiniteness in a matrix-valued context
%J Studia Mathematica
%D 2017
%P 143-192
%V 236
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8531-7-2016/
%R 10.4064/sm8531-7-2016
%G en
%F 10_4064_sm8531_7_2016
Fritz Gesztesy; Michael Pang. On (conditional) positive semidefiniteness in a matrix-valued context. Studia Mathematica, Tome 236 (2017) no. 2, pp. 143-192. doi: 10.4064/sm8531-7-2016

Cité par Sources :