On (conditional) positive semidefiniteness in a matrix-valued context
Studia Mathematica, Tome 236 (2017) no. 2, pp. 143-192
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In a nutshell, we intend to extend Schoenberg’s classical theorem connecting conditionally positive semidefinite functions $F : \mathbb{R}^n \to \mathbb{C}$, $n \in \mathbb{N}$, and their positive semidefinite exponentials $\exp(tF)$, $t \gt 0$, to the case of matrix-valued functions $F \colon \mathbb{R}^n \to \mathbb{C}^{m \times m}$, $m \in \mathbb{N}$. Moreover, we study the closely associated property that $\exp(t F(- i \nabla))$, $t \gt 0$, is positivity preserving and its failure to extend directly in the matrix-valued context.
Keywords:
nutshell intend extend schoenberg classical theorem connecting conditionally positive semidefinite functions mathbb mathbb mathbb their positive semidefinite exponentials exp matrix valued functions colon mathbb mathbb times mathbb moreover study closely associated property exp nabla positivity preserving its failure extend directly matrix valued context
Affiliations des auteurs :
Fritz Gesztesy 1 ; Michael Pang 2
@article{10_4064_sm8531_7_2016,
author = {Fritz Gesztesy and Michael Pang},
title = {On (conditional) positive semidefiniteness in a matrix-valued context},
journal = {Studia Mathematica},
pages = {143--192},
year = {2017},
volume = {236},
number = {2},
doi = {10.4064/sm8531-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8531-7-2016/}
}
TY - JOUR AU - Fritz Gesztesy AU - Michael Pang TI - On (conditional) positive semidefiniteness in a matrix-valued context JO - Studia Mathematica PY - 2017 SP - 143 EP - 192 VL - 236 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8531-7-2016/ DO - 10.4064/sm8531-7-2016 LA - en ID - 10_4064_sm8531_7_2016 ER -
Fritz Gesztesy; Michael Pang. On (conditional) positive semidefiniteness in a matrix-valued context. Studia Mathematica, Tome 236 (2017) no. 2, pp. 143-192. doi: 10.4064/sm8531-7-2016
Cité par Sources :