1Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A. and Department of Mathematics Baylor University One Bear Place #97328 Waco, TX 76798-7328, U.S.A. 2Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A.
Studia Mathematica, Tome 236 (2017) no. 2, pp. 143-192
In a nutshell, we intend to extend Schoenberg’s classical theorem connecting conditionally positive semidefinite functions $F : \mathbb{R}^n \to \mathbb{C}$, $n \in \mathbb{N}$, and their positive semidefinite exponentials $\exp(tF)$, $t \gt 0$, to the case of matrix-valued functions $F \colon \mathbb{R}^n \to \mathbb{C}^{m \times m}$, $m \in \mathbb{N}$. Moreover, we study the closely associated property that $\exp(t F(- i \nabla))$, $t \gt 0$, is positivity preserving and its failure to extend directly in the matrix-valued context.
1
Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A. and Department of Mathematics Baylor University One Bear Place #97328 Waco, TX 76798-7328, U.S.A.
2
Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A.
@article{10_4064_sm8531_7_2016,
author = {Fritz Gesztesy and Michael Pang},
title = {On (conditional) positive semidefiniteness in a matrix-valued context},
journal = {Studia Mathematica},
pages = {143--192},
year = {2017},
volume = {236},
number = {2},
doi = {10.4064/sm8531-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8531-7-2016/}
}
TY - JOUR
AU - Fritz Gesztesy
AU - Michael Pang
TI - On (conditional) positive semidefiniteness in a matrix-valued context
JO - Studia Mathematica
PY - 2017
SP - 143
EP - 192
VL - 236
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8531-7-2016/
DO - 10.4064/sm8531-7-2016
LA - en
ID - 10_4064_sm8531_7_2016
ER -
%0 Journal Article
%A Fritz Gesztesy
%A Michael Pang
%T On (conditional) positive semidefiniteness in a matrix-valued context
%J Studia Mathematica
%D 2017
%P 143-192
%V 236
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8531-7-2016/
%R 10.4064/sm8531-7-2016
%G en
%F 10_4064_sm8531_7_2016
Fritz Gesztesy; Michael Pang. On (conditional) positive semidefiniteness in a matrix-valued context. Studia Mathematica, Tome 236 (2017) no. 2, pp. 143-192. doi: 10.4064/sm8531-7-2016