The joint modulus of variation of metric space valued functions and pointwise selection principles
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 238 (2017) no. 1, pp. 37-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Given $T\subset\mathbb R$ and a metric space $M$, we introduce a nondecreasing sequence
$\{\nu_n\}$ of pseudometrics on $M^T$ (the set of all functions from $T$ into $M$),
called the {joint modulus of variation}. We prove that {if two sequences
$\{f_j\}$ and $\{g_j\}$ of functions from $M^T$ are such that $\{f_j\}$ is pointwise
precompact, $\{g_j\}$ is pointwise convergent, and $\limsup_{j\to\infty}\nu_n(f_j,g_j)
= o(n)$ as $n\to\infty$, then $\{f_j\}$ admits a pointwise convergent
subsequence whose limit is a conditionally regulated function}. We illustrate the sharpness
of this result by examples (in particular, the assumption on the $\limsup$ is necessary
for uniformly convergent sequences $\{f_j\}$ and $\{g_j\}$, and ‘almost necessary’
when they converge pointwise) and show that most of the known Helly-type pointwise
selection theorems are its particular cases.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
given subset mathbb metric space introduce nondecreasing sequence pseudometrics set functions called joint modulus variation prove sequences functions pointwise precompact nbsp pointwise convergent limsup infty g infty admits pointwise convergent subsequence whose limit conditionally regulated function illustrate sharpness result examples particular assumption limsup necessary uniformly convergent sequences almost necessary converge pointwise known helly type pointwise selection theorems its particular cases
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Vyacheslav V. Chistyakov 1 ; Svetlana A. Chistyakova 1
@article{10_4064_sm8522_8_2016,
     author = {Vyacheslav V. Chistyakov and Svetlana A. Chistyakova},
     title = {The joint modulus of variation of metric space valued functions and pointwise selection principles},
     journal = {Studia Mathematica},
     pages = {37--57},
     publisher = {mathdoc},
     volume = {238},
     number = {1},
     year = {2017},
     doi = {10.4064/sm8522-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8522-8-2016/}
}
                      
                      
                    TY - JOUR AU - Vyacheslav V. Chistyakov AU - Svetlana A. Chistyakova TI - The joint modulus of variation of metric space valued functions and pointwise selection principles JO - Studia Mathematica PY - 2017 SP - 37 EP - 57 VL - 238 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8522-8-2016/ DO - 10.4064/sm8522-8-2016 LA - en ID - 10_4064_sm8522_8_2016 ER -
%0 Journal Article %A Vyacheslav V. Chistyakov %A Svetlana A. Chistyakova %T The joint modulus of variation of metric space valued functions and pointwise selection principles %J Studia Mathematica %D 2017 %P 37-57 %V 238 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8522-8-2016/ %R 10.4064/sm8522-8-2016 %G en %F 10_4064_sm8522_8_2016
Vyacheslav V. Chistyakov; Svetlana A. Chistyakova. The joint modulus of variation of metric space valued functions and pointwise selection principles. Studia Mathematica, Tome 238 (2017) no. 1, pp. 37-57. doi: 10.4064/sm8522-8-2016
Cité par Sources :
