The joint modulus of variation of metric space valued functions and pointwise selection principles
Studia Mathematica, Tome 238 (2017) no. 1, pp. 37-57

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given $T\subset\mathbb R$ and a metric space $M$, we introduce a nondecreasing sequence $\{\nu_n\}$ of pseudometrics on $M^T$ (the set of all functions from $T$ into $M$), called the {joint modulus of variation}. We prove that {if two sequences $\{f_j\}$ and $\{g_j\}$ of functions from $M^T$ are such that $\{f_j\}$ is pointwise precompact, $\{g_j\}$ is pointwise convergent, and $\limsup_{j\to\infty}\nu_n(f_j,g_j) = o(n)$ as $n\to\infty$, then $\{f_j\}$ admits a pointwise convergent subsequence whose limit is a conditionally regulated function}. We illustrate the sharpness of this result by examples (in particular, the assumption on the $\limsup$ is necessary for uniformly convergent sequences $\{f_j\}$ and $\{g_j\}$, and ‘almost necessary’ when they converge pointwise) and show that most of the known Helly-type pointwise selection theorems are its particular cases.
DOI : 10.4064/sm8522-8-2016
Keywords: given subset mathbb metric space introduce nondecreasing sequence pseudometrics set functions called joint modulus variation prove sequences functions pointwise precompact nbsp pointwise convergent limsup infty g infty admits pointwise convergent subsequence whose limit conditionally regulated function illustrate sharpness result examples particular assumption limsup necessary uniformly convergent sequences almost necessary converge pointwise known helly type pointwise selection theorems its particular cases

Vyacheslav V. Chistyakov 1 ; Svetlana A. Chistyakova 1

1 Department of Informatics, Mathematics and Computer Science National Research University Higher School of Economics Bol’shaya Pechërskaya St. 25/12 Nizhny Novgorod 603155, Russia
@article{10_4064_sm8522_8_2016,
     author = {Vyacheslav V. Chistyakov and Svetlana A. Chistyakova},
     title = {The joint modulus of variation of metric space valued functions and pointwise selection principles},
     journal = {Studia Mathematica},
     pages = {37--57},
     publisher = {mathdoc},
     volume = {238},
     number = {1},
     year = {2017},
     doi = {10.4064/sm8522-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8522-8-2016/}
}
TY  - JOUR
AU  - Vyacheslav V. Chistyakov
AU  - Svetlana A. Chistyakova
TI  - The joint modulus of variation of metric space valued functions and pointwise selection principles
JO  - Studia Mathematica
PY  - 2017
SP  - 37
EP  - 57
VL  - 238
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8522-8-2016/
DO  - 10.4064/sm8522-8-2016
LA  - en
ID  - 10_4064_sm8522_8_2016
ER  - 
%0 Journal Article
%A Vyacheslav V. Chistyakov
%A Svetlana A. Chistyakova
%T The joint modulus of variation of metric space valued functions and pointwise selection principles
%J Studia Mathematica
%D 2017
%P 37-57
%V 238
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8522-8-2016/
%R 10.4064/sm8522-8-2016
%G en
%F 10_4064_sm8522_8_2016
Vyacheslav V. Chistyakov; Svetlana A. Chistyakova. The joint modulus of variation of metric space valued functions and pointwise selection principles. Studia Mathematica, Tome 238 (2017) no. 1, pp. 37-57. doi: 10.4064/sm8522-8-2016

Cité par Sources :