Tensor-splitting properties of $n$-inverse pairs of operators
Studia Mathematica, Tome 238 (2017) no. 1, pp. 17-36
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study $n$-inverse pairs of operators on the tensor product of Banach spaces. In particular we show that an $n$-inverse pair of elementary tensors of operators on the tensor product of two Banach spaces can arise only from $l$- and $m$-inverse pairs of operators on the individual spaces. This gives a converse to a result of Duggal and Müller (2013), and proves a conjecture of the second named author (2015). Our proof uses techniques from algebraic geometry, which generalize to other relations among operators in a tensor product. We apply this theory to obtain results for $n$-symmetries in a tensor product as well.
Keywords:
study n inverse pairs operators tensor product banach spaces particular n inverse pair elementary tensors operators tensor product banach spaces arise only l m inverse pairs operators individual spaces gives converse result duggal ller proves conjecture second named author proof uses techniques algebraic geometry which generalize other relations among operators tensor product apply theory obtain results n symmetries tensor product
Affiliations des auteurs :
Stepan Paul 1 ; Caixing Gu 2
@article{10_4064_sm8518_2_2017,
author = {Stepan Paul and Caixing Gu},
title = {Tensor-splitting properties of $n$-inverse pairs of operators},
journal = {Studia Mathematica},
pages = {17--36},
publisher = {mathdoc},
volume = {238},
number = {1},
year = {2017},
doi = {10.4064/sm8518-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8518-2-2017/}
}
TY - JOUR AU - Stepan Paul AU - Caixing Gu TI - Tensor-splitting properties of $n$-inverse pairs of operators JO - Studia Mathematica PY - 2017 SP - 17 EP - 36 VL - 238 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8518-2-2017/ DO - 10.4064/sm8518-2-2017 LA - en ID - 10_4064_sm8518_2_2017 ER -
Stepan Paul; Caixing Gu. Tensor-splitting properties of $n$-inverse pairs of operators. Studia Mathematica, Tome 238 (2017) no. 1, pp. 17-36. doi: 10.4064/sm8518-2-2017
Cité par Sources :