Tensor-splitting properties of $n$-inverse pairs of operators
Studia Mathematica, Tome 238 (2017) no. 1, pp. 17-36

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study $n$-inverse pairs of operators on the tensor product of Banach spaces. In particular we show that an $n$-inverse pair of elementary tensors of operators on the tensor product of two Banach spaces can arise only from $l$- and $m$-inverse pairs of operators on the individual spaces. This gives a converse to a result of Duggal and Müller (2013), and proves a conjecture of the second named author (2015). Our proof uses techniques from algebraic geometry, which generalize to other relations among operators in a tensor product. We apply this theory to obtain results for $n$-symmetries in a tensor product as well.
DOI : 10.4064/sm8518-2-2017
Keywords: study n inverse pairs operators tensor product banach spaces particular n inverse pair elementary tensors operators tensor product banach spaces arise only l m inverse pairs operators individual spaces gives converse result duggal ller proves conjecture second named author proof uses techniques algebraic geometry which generalize other relations among operators tensor product apply theory obtain results n symmetries tensor product

Stepan Paul 1 ; Caixing Gu 2

1 Department of Mathematics University of California, Santa Barbara Santa Barbara, CA 93106, U.S.A.
2 Department of Mathematics California Polytechnic State University San Luis Obispo, CA 93407, U.S.A.
@article{10_4064_sm8518_2_2017,
     author = {Stepan Paul and Caixing Gu},
     title = {Tensor-splitting properties of $n$-inverse pairs of operators},
     journal = {Studia Mathematica},
     pages = {17--36},
     publisher = {mathdoc},
     volume = {238},
     number = {1},
     year = {2017},
     doi = {10.4064/sm8518-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8518-2-2017/}
}
TY  - JOUR
AU  - Stepan Paul
AU  - Caixing Gu
TI  - Tensor-splitting properties of $n$-inverse pairs of operators
JO  - Studia Mathematica
PY  - 2017
SP  - 17
EP  - 36
VL  - 238
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8518-2-2017/
DO  - 10.4064/sm8518-2-2017
LA  - en
ID  - 10_4064_sm8518_2_2017
ER  - 
%0 Journal Article
%A Stepan Paul
%A Caixing Gu
%T Tensor-splitting properties of $n$-inverse pairs of operators
%J Studia Mathematica
%D 2017
%P 17-36
%V 238
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8518-2-2017/
%R 10.4064/sm8518-2-2017
%G en
%F 10_4064_sm8518_2_2017
Stepan Paul; Caixing Gu. Tensor-splitting properties of $n$-inverse pairs of operators. Studia Mathematica, Tome 238 (2017) no. 1, pp. 17-36. doi: 10.4064/sm8518-2-2017

Cité par Sources :