On the Ritt property and weak type maximal inequalities for convolution powers on $\ell ^1(\mathbb {Z})$
Studia Mathematica, Tome 235 (2016) no. 1, pp. 47-85

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the behaviour of convolution powers of probability measures $\mu $ on $\mathbb Z$ such that $(\mu (n))_{n\in \mathbb N}$ is completely monotone or such that $\mu $ is centred with a second moment. In particular we exhibit many new examples of probability measures on $\mathbb Z$ having the so-called Ritt property and whose convolution powers satisfy weak type maximal inequalities in $\ell ^1(\mathbb Z)$.
DOI : 10.4064/sm8516-8-2016
Keywords: study behaviour convolution powers probability measures nbsp mathbb mathbb completely monotone centred second moment particular exhibit many examples probability measures mathbb having so called ritt property whose convolution powers satisfy weak type maximal inequalities ell mathbb

Christophe Cuny 1

1 Laboratoire MICS CentraleSupélec Grande Voie des Vignes 92295 Châtenay-Malabry Cedex, France
@article{10_4064_sm8516_8_2016,
     author = {Christophe Cuny},
     title = {On the {Ritt} property and weak type maximal inequalities for convolution powers on $\ell ^1(\mathbb {Z})$},
     journal = {Studia Mathematica},
     pages = {47--85},
     publisher = {mathdoc},
     volume = {235},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8516-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8516-8-2016/}
}
TY  - JOUR
AU  - Christophe Cuny
TI  - On the Ritt property and weak type maximal inequalities for convolution powers on $\ell ^1(\mathbb {Z})$
JO  - Studia Mathematica
PY  - 2016
SP  - 47
EP  - 85
VL  - 235
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8516-8-2016/
DO  - 10.4064/sm8516-8-2016
LA  - en
ID  - 10_4064_sm8516_8_2016
ER  - 
%0 Journal Article
%A Christophe Cuny
%T On the Ritt property and weak type maximal inequalities for convolution powers on $\ell ^1(\mathbb {Z})$
%J Studia Mathematica
%D 2016
%P 47-85
%V 235
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8516-8-2016/
%R 10.4064/sm8516-8-2016
%G en
%F 10_4064_sm8516_8_2016
Christophe Cuny. On the Ritt property and weak type maximal inequalities for convolution powers on $\ell ^1(\mathbb {Z})$. Studia Mathematica, Tome 235 (2016) no. 1, pp. 47-85. doi: 10.4064/sm8516-8-2016

Cité par Sources :