Dichotomy of global density of Riesz capacity
Studia Mathematica, Tome 232 (2016) no. 3, pp. 267-278 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $C_\alpha $ be the Riesz capacity of order $\alpha $, $0 \lt \alpha \lt n$, in ${{\mathbb R}^n}$. We consider the Riesz capacity density $$ \underline {\mathcal {D}}(C_\alpha ,E,r)=\operatorname {inf}_{x\in {{\mathbb R}^n}}\frac {C_\alpha (E\cap B(x,r))}{C_\alpha (B(x,r))} $$ for a Borel set $E\subset {{\mathbb R}^n}$, where $B(x,r)$ stands for the open ball with center at $x$ and radius $r$. In case $0 \lt \alpha \le 2$, we show that $\lim_{r\to \infty }\underline {\mathcal {D}} (C_\alpha ,E,r)$ is either 0 or 1; the first case occurs if and only if $\underline {\mathcal {D}} (C_\alpha ,E,r)$ is identically zero for all $r \gt 0$. Moreover, it is shown that the densities with respect to more general open sets enjoy the same dichotomy. A decay estimate for $\alpha $-capacitary potentials is also obtained.
DOI : 10.4064/sm8511-4-2016
Keywords: alpha riesz capacity order alpha alpha mathbb consider riesz capacity density underline mathcal alpha operatorname inf mathbb frac alpha cap alpha borel set subset mathbb where stands ball center radius nbsp alpha lim infty underline mathcal alpha either first occurs only underline mathcal alpha identically zero moreover shown densities respect general sets enjoy dichotomy nbsp decay estimate alpha capacitary potentials obtained

Hiroaki Aikawa 1

1 Department of Mathematics Hokkaido University Sapporo 060-0810, Japan
@article{10_4064_sm8511_4_2016,
     author = {Hiroaki Aikawa},
     title = {Dichotomy of global density of {Riesz} capacity},
     journal = {Studia Mathematica},
     pages = {267--278},
     year = {2016},
     volume = {232},
     number = {3},
     doi = {10.4064/sm8511-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8511-4-2016/}
}
TY  - JOUR
AU  - Hiroaki Aikawa
TI  - Dichotomy of global density of Riesz capacity
JO  - Studia Mathematica
PY  - 2016
SP  - 267
EP  - 278
VL  - 232
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8511-4-2016/
DO  - 10.4064/sm8511-4-2016
LA  - en
ID  - 10_4064_sm8511_4_2016
ER  - 
%0 Journal Article
%A Hiroaki Aikawa
%T Dichotomy of global density of Riesz capacity
%J Studia Mathematica
%D 2016
%P 267-278
%V 232
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8511-4-2016/
%R 10.4064/sm8511-4-2016
%G en
%F 10_4064_sm8511_4_2016
Hiroaki Aikawa. Dichotomy of global density of Riesz capacity. Studia Mathematica, Tome 232 (2016) no. 3, pp. 267-278. doi: 10.4064/sm8511-4-2016

Cité par Sources :