Dichotomy of global density of Riesz capacity
Studia Mathematica, Tome 232 (2016) no. 3, pp. 267-278
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $C_\alpha $ be the Riesz capacity of order $\alpha $, $0 \lt \alpha \lt n$, in ${{\mathbb R}^n}$. We consider the Riesz capacity density $$ \underline {\mathcal {D}}(C_\alpha ,E,r)=\operatorname {inf}_{x\in {{\mathbb R}^n}}\frac {C_\alpha (E\cap B(x,r))}{C_\alpha (B(x,r))} $$ for a Borel set $E\subset {{\mathbb R}^n}$, where $B(x,r)$ stands for the open ball with center at $x$ and radius $r$. In case $0 \lt \alpha \le 2$, we show that $\lim_{r\to \infty }\underline {\mathcal {D}} (C_\alpha ,E,r)$ is either 0 or 1; the first case occurs if and only if $\underline {\mathcal {D}} (C_\alpha ,E,r)$ is identically zero for all $r \gt 0$. Moreover, it is shown that the densities with respect to more general open sets enjoy the same dichotomy. A decay estimate for $\alpha $-capacitary potentials is also obtained.
Keywords:
alpha riesz capacity order alpha alpha mathbb consider riesz capacity density underline mathcal alpha operatorname inf mathbb frac alpha cap alpha borel set subset mathbb where stands ball center radius nbsp alpha lim infty underline mathcal alpha either first occurs only underline mathcal alpha identically zero moreover shown densities respect general sets enjoy dichotomy nbsp decay estimate alpha capacitary potentials obtained
Affiliations des auteurs :
Hiroaki Aikawa 1
@article{10_4064_sm8511_4_2016,
author = {Hiroaki Aikawa},
title = {Dichotomy of global density of {Riesz} capacity},
journal = {Studia Mathematica},
pages = {267--278},
year = {2016},
volume = {232},
number = {3},
doi = {10.4064/sm8511-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8511-4-2016/}
}
Hiroaki Aikawa. Dichotomy of global density of Riesz capacity. Studia Mathematica, Tome 232 (2016) no. 3, pp. 267-278. doi: 10.4064/sm8511-4-2016
Cité par Sources :