Operator Lipschitz functions on Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 232 (2016) no. 1, pp. 57-92
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              
Let $X$, $Y$ be Banach spaces and let ${\mathcal {L}}(X,Y)$ be the space of bounded linear operators from $X$ to $Y$. We develop the theory of double operator integrals on ${\mathcal {L}}(X,Y)$ and apply this theory to obtain commutator estimates of the form $$ \| f(B)S-Sf(A)\| _{{\mathcal {L}}(X,Y)}\leq {\rm const}\,\| BS-SA\| _{{\mathcal {L}}(X,Y)} $$ for a large class of functions $f$, where $A\in {\mathcal {L}}(X)$, $B\in {\mathcal {L}}(Y)$ are scalar type operators and $S\in {\mathcal {L}}(X,Y)$. In particular, we establish this estimate for $f(t):=| t| $ and for diagonalizable operators on $X=\ell _{p}$ and $Y=\ell _{q}$ for $p \lt q$. We also study the estimate above in the setting of Banach ideals in ${\mathcal {L}}(X,Y)$. The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
banach spaces mathcal space bounded linear operators develop theory double operator integrals mathcal apply theory obtain commutator estimates form s sf mathcal leq const bs sa mathcal large class functions where mathcal mathcal scalar type operators mathcal particular establish estimate diagonalizable operators ell ell study estimate above setting banach ideals mathcal commutator estimates derive diagonalizable matrices constant independent size matrix
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Jan Rozendaal 1 ; Fedor Sukochev 2 ; Anna Tomskova 3
@article{10_4064_sm8499_3_2016,
     author = {Jan Rozendaal and Fedor Sukochev and Anna Tomskova},
     title = {Operator {Lipschitz} functions on {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {57--92},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8499-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8499-3-2016/}
}
                      
                      
                    TY - JOUR AU - Jan Rozendaal AU - Fedor Sukochev AU - Anna Tomskova TI - Operator Lipschitz functions on Banach spaces JO - Studia Mathematica PY - 2016 SP - 57 EP - 92 VL - 232 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8499-3-2016/ DO - 10.4064/sm8499-3-2016 LA - en ID - 10_4064_sm8499_3_2016 ER -
Jan Rozendaal; Fedor Sukochev; Anna Tomskova. Operator Lipschitz functions on Banach spaces. Studia Mathematica, Tome 232 (2016) no. 1, pp. 57-92. doi: 10.4064/sm8499-3-2016
Cité par Sources :
