Operator Lipschitz functions on Banach spaces
Studia Mathematica, Tome 232 (2016) no. 1, pp. 57-92

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$, $Y$ be Banach spaces and let ${\mathcal {L}}(X,Y)$ be the space of bounded linear operators from $X$ to $Y$. We develop the theory of double operator integrals on ${\mathcal {L}}(X,Y)$ and apply this theory to obtain commutator estimates of the form $$ \| f(B)S-Sf(A)\| _{{\mathcal {L}}(X,Y)}\leq {\rm const}\,\| BS-SA\| _{{\mathcal {L}}(X,Y)} $$ for a large class of functions $f$, where $A\in {\mathcal {L}}(X)$, $B\in {\mathcal {L}}(Y)$ are scalar type operators and $S\in {\mathcal {L}}(X,Y)$. In particular, we establish this estimate for $f(t):=| t| $ and for diagonalizable operators on $X=\ell _{p}$ and $Y=\ell _{q}$ for $p \lt q$. We also study the estimate above in the setting of Banach ideals in ${\mathcal {L}}(X,Y)$. The commutator estimates we derive hold for diagonalizable matrices with a constant independent of the size of the matrix.
DOI : 10.4064/sm8499-3-2016
Keywords: banach spaces mathcal space bounded linear operators develop theory double operator integrals mathcal apply theory obtain commutator estimates form s sf mathcal leq const bs sa mathcal large class functions where mathcal mathcal scalar type operators mathcal particular establish estimate diagonalizable operators ell ell study estimate above setting banach ideals mathcal commutator estimates derive diagonalizable matrices constant independent size matrix

Jan Rozendaal 1 ; Fedor Sukochev 2 ; Anna Tomskova 3

1 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland
2 School of Mathematics & Statistics University of NSW Kensington, NSW 2052, Australia
3 School of Mathematics & Statistics University of NSW Kensington, NSW 2052 Australia
@article{10_4064_sm8499_3_2016,
     author = {Jan Rozendaal and Fedor Sukochev and Anna Tomskova},
     title = {Operator {Lipschitz} functions on {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {57--92},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8499-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8499-3-2016/}
}
TY  - JOUR
AU  - Jan Rozendaal
AU  - Fedor Sukochev
AU  - Anna Tomskova
TI  - Operator Lipschitz functions on Banach spaces
JO  - Studia Mathematica
PY  - 2016
SP  - 57
EP  - 92
VL  - 232
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8499-3-2016/
DO  - 10.4064/sm8499-3-2016
LA  - en
ID  - 10_4064_sm8499_3_2016
ER  - 
%0 Journal Article
%A Jan Rozendaal
%A Fedor Sukochev
%A Anna Tomskova
%T Operator Lipschitz functions on Banach spaces
%J Studia Mathematica
%D 2016
%P 57-92
%V 232
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8499-3-2016/
%R 10.4064/sm8499-3-2016
%G en
%F 10_4064_sm8499_3_2016
Jan Rozendaal; Fedor Sukochev; Anna Tomskova. Operator Lipschitz functions on Banach spaces. Studia Mathematica, Tome 232 (2016) no. 1, pp. 57-92. doi: 10.4064/sm8499-3-2016

Cité par Sources :