Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary
Studia Mathematica, Tome 235 (2016) no. 3, pp. 209-224
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that any weakly differentiable function with a square integrable gradient can be extended to the Carathéodory boundary of any simply connected planar domain $\varOmega \not =\mathbb R^2$ up to a set of conformal capacity zero. This result is based on the notion of capacitary boundary associated with the Dirichlet space $L^1_2(\varOmega )$.
Keywords:
prove weakly differentiable function square integrable gradient extended carath odory boundary simply connected planar domain varomega mathbb set conformal capacity zero result based notion capacitary boundary associated dirichlet space varomega
Affiliations des auteurs :
Vladimir Gol’dshtein 1 ; Alexander Ukhlov 1
@article{10_4064_sm8485_8_2016,
author = {Vladimir Gol{\textquoteright}dshtein and Alexander Ukhlov},
title = {Traces of functions of $L^1_2$ {Dirichlet} spaces on the {Carath\'eodory} boundary},
journal = {Studia Mathematica},
pages = {209--224},
publisher = {mathdoc},
volume = {235},
number = {3},
year = {2016},
doi = {10.4064/sm8485-8-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8485-8-2016/}
}
TY - JOUR AU - Vladimir Gol’dshtein AU - Alexander Ukhlov TI - Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary JO - Studia Mathematica PY - 2016 SP - 209 EP - 224 VL - 235 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8485-8-2016/ DO - 10.4064/sm8485-8-2016 LA - en ID - 10_4064_sm8485_8_2016 ER -
%0 Journal Article %A Vladimir Gol’dshtein %A Alexander Ukhlov %T Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary %J Studia Mathematica %D 2016 %P 209-224 %V 235 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8485-8-2016/ %R 10.4064/sm8485-8-2016 %G en %F 10_4064_sm8485_8_2016
Vladimir Gol’dshtein; Alexander Ukhlov. Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary. Studia Mathematica, Tome 235 (2016) no. 3, pp. 209-224. doi: 10.4064/sm8485-8-2016
Cité par Sources :