Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary
Studia Mathematica, Tome 235 (2016) no. 3, pp. 209-224

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that any weakly differentiable function with a square integrable gradient can be extended to the Carathéodory boundary of any simply connected planar domain $\varOmega \not =\mathbb R^2$ up to a set of conformal capacity zero. This result is based on the notion of capacitary boundary associated with the Dirichlet space $L^1_2(\varOmega )$.
DOI : 10.4064/sm8485-8-2016
Keywords: prove weakly differentiable function square integrable gradient extended carath odory boundary simply connected planar domain varomega mathbb set conformal capacity zero result based notion capacitary boundary associated dirichlet space varomega

Vladimir Gol’dshtein 1 ; Alexander Ukhlov 1

1 Department of Mathematics Ben-Gurion University of the Negev P.O. Box 653, Beer Sheva, 8410501, Israel
@article{10_4064_sm8485_8_2016,
     author = {Vladimir Gol{\textquoteright}dshtein and Alexander Ukhlov},
     title = {Traces of functions of $L^1_2$ {Dirichlet} spaces on the {Carath\'eodory} boundary},
     journal = {Studia Mathematica},
     pages = {209--224},
     publisher = {mathdoc},
     volume = {235},
     number = {3},
     year = {2016},
     doi = {10.4064/sm8485-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8485-8-2016/}
}
TY  - JOUR
AU  - Vladimir Gol’dshtein
AU  - Alexander Ukhlov
TI  - Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary
JO  - Studia Mathematica
PY  - 2016
SP  - 209
EP  - 224
VL  - 235
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8485-8-2016/
DO  - 10.4064/sm8485-8-2016
LA  - en
ID  - 10_4064_sm8485_8_2016
ER  - 
%0 Journal Article
%A Vladimir Gol’dshtein
%A Alexander Ukhlov
%T Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary
%J Studia Mathematica
%D 2016
%P 209-224
%V 235
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8485-8-2016/
%R 10.4064/sm8485-8-2016
%G en
%F 10_4064_sm8485_8_2016
Vladimir Gol’dshtein; Alexander Ukhlov. Traces of functions of $L^1_2$ Dirichlet spaces on the Carathéodory boundary. Studia Mathematica, Tome 235 (2016) no. 3, pp. 209-224. doi: 10.4064/sm8485-8-2016

Cité par Sources :