Polynomial estimates on real and complex $L_p(\mu )$ spaces
Studia Mathematica, Tome 235 (2016) no. 1, pp. 31-45

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In his commentary to Problem 73 of Mazur and Orlicz in the Scottish Book, L. A. Harris raised the following natural generalization: Let $X$ be a Banach space, let $k_1,\ldots,k_n$ be nonnegative integers whose sum is $m$ and let $c(k_1, \ldots, k_n; X)$ be the smallest number with the property that if $L$ is any symmetric $m$-linear mapping of one real normed linear space into another, then $|L(x_1^{k_1}\ldots x_n^{k_n})|\leq c(k_1,\ldots,k_n; X)\|\widehat L\|$, where $\widehat L$ is the $m$-homogeneous polynomial associated to $L$. In this paper, we give estimates in the case of a real $L_p(\mu)$ space using three different techniques and we get optimal results in some special cases.
DOI : 10.4064/sm8484-7-2016
Keywords: his commentary problem mazur orlicz scottish book harris raised following natural generalization banach space ldots nonnegative integers whose sum ldots smallest number property symmetric m linear mapping real normed linear space another ldots leq ldots widehat where widehat m homogeneous polynomial associated paper estimates real space using three different techniques get optimal results special cases

Marios K. Papadiamantis 1 ; Yannis Sarantopoulos 1

1 Department of Mathematics National Technical University Zografou Campus 157 80, Athens, Greece
@article{10_4064_sm8484_7_2016,
     author = {Marios K. Papadiamantis and Yannis Sarantopoulos},
     title = {Polynomial estimates on real and complex $L_p(\mu )$ spaces},
     journal = {Studia Mathematica},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {235},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8484-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8484-7-2016/}
}
TY  - JOUR
AU  - Marios K. Papadiamantis
AU  - Yannis Sarantopoulos
TI  - Polynomial estimates on real and complex $L_p(\mu )$ spaces
JO  - Studia Mathematica
PY  - 2016
SP  - 31
EP  - 45
VL  - 235
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8484-7-2016/
DO  - 10.4064/sm8484-7-2016
LA  - en
ID  - 10_4064_sm8484_7_2016
ER  - 
%0 Journal Article
%A Marios K. Papadiamantis
%A Yannis Sarantopoulos
%T Polynomial estimates on real and complex $L_p(\mu )$ spaces
%J Studia Mathematica
%D 2016
%P 31-45
%V 235
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8484-7-2016/
%R 10.4064/sm8484-7-2016
%G en
%F 10_4064_sm8484_7_2016
Marios K. Papadiamantis; Yannis Sarantopoulos. Polynomial estimates on real and complex $L_p(\mu )$ spaces. Studia Mathematica, Tome 235 (2016) no. 1, pp. 31-45. doi: 10.4064/sm8484-7-2016

Cité par Sources :