Polynomial estimates on real and complex $L_p(\mu )$ spaces
Studia Mathematica, Tome 235 (2016) no. 1, pp. 31-45
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In his commentary to Problem 73 of Mazur and Orlicz in the Scottish Book, L. A. Harris raised the following natural generalization: Let $X$ be a Banach space, let $k_1,\ldots,k_n$ be nonnegative integers whose sum is $m$ and let $c(k_1, \ldots, k_n; X)$ be the smallest number with the property that if $L$ is any symmetric $m$-linear mapping of one real normed linear space into another, then $|L(x_1^{k_1}\ldots x_n^{k_n})|\leq c(k_1,\ldots,k_n; X)\|\widehat L\|$, where $\widehat L$ is the $m$-homogeneous polynomial associated to $L$. In this paper, we give estimates in the case of a real $L_p(\mu)$ space using three different techniques and we get optimal results in some special cases.
Keywords:
his commentary problem mazur orlicz scottish book harris raised following natural generalization banach space ldots nonnegative integers whose sum ldots smallest number property symmetric m linear mapping real normed linear space another ldots leq ldots widehat where widehat m homogeneous polynomial associated paper estimates real space using three different techniques get optimal results special cases
Affiliations des auteurs :
Marios K. Papadiamantis 1 ; Yannis Sarantopoulos 1
@article{10_4064_sm8484_7_2016,
author = {Marios K. Papadiamantis and Yannis Sarantopoulos},
title = {Polynomial estimates on real and complex $L_p(\mu )$ spaces},
journal = {Studia Mathematica},
pages = {31--45},
publisher = {mathdoc},
volume = {235},
number = {1},
year = {2016},
doi = {10.4064/sm8484-7-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8484-7-2016/}
}
TY - JOUR AU - Marios K. Papadiamantis AU - Yannis Sarantopoulos TI - Polynomial estimates on real and complex $L_p(\mu )$ spaces JO - Studia Mathematica PY - 2016 SP - 31 EP - 45 VL - 235 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8484-7-2016/ DO - 10.4064/sm8484-7-2016 LA - en ID - 10_4064_sm8484_7_2016 ER -
%0 Journal Article %A Marios K. Papadiamantis %A Yannis Sarantopoulos %T Polynomial estimates on real and complex $L_p(\mu )$ spaces %J Studia Mathematica %D 2016 %P 31-45 %V 235 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8484-7-2016/ %R 10.4064/sm8484-7-2016 %G en %F 10_4064_sm8484_7_2016
Marios K. Papadiamantis; Yannis Sarantopoulos. Polynomial estimates on real and complex $L_p(\mu )$ spaces. Studia Mathematica, Tome 235 (2016) no. 1, pp. 31-45. doi: 10.4064/sm8484-7-2016
Cité par Sources :