On the set of limit points of conditionally convergent series
Studia Mathematica, Tome 237 (2017) no. 3, pp. 221-239 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $\sum_{n=1}^\infty x_n$ be a conditionally convergent series in a Banach space and let $\tau $ be a permutation of the natural numbers. We study the set $\operatorname {LIM}(\sum_{n=1}^\infty x_{\tau (n)})$ of all limit points of the sequence $(\sum_{n=1}^p x_{\tau (n)})_{p=1}^\infty $ of partial sums of the rearranged series $\sum_{n=1}^\infty x_{\tau (n)}$. We give a full characterization of such limit sets in finite-dimensional spaces. Namely, every such limit set in $\mathbb R^m$ is either compact and connected, or closed with all connected components unbounded. On the other hand, each set of one of these types is the limit set of some rearranged conditionally convergent series. Moreover, this characterization does not hold in infinite-dimensional spaces. We show that if $\sum_{n=1}^\infty x_n$ has the Rearrangement Property and $A$ is a closed subset of the closure of the sum range of $\sum_{n=1}^\infty x_n$ and it is $\varepsilon $-chainable for every $\varepsilon \gt 0$, then there is a permutation $\tau $ such that $A=\operatorname {LIM}(\sum_{n=1}^\infty x_{\tau (n)})$.
DOI : 10.4064/sm8480-10-2016
Keywords: sum infty conditionally convergent series banach space tau permutation natural numbers study set operatorname lim sum infty tau limit points sequence sum tau infty partial sums rearranged series sum infty tau full characterization limit sets finite dimensional spaces namely every limit set mathbb either compact connected closed connected components unbounded other each set these types limit set rearranged conditionally convergent series moreover characterization does infinite dimensional spaces sum infty has rearrangement property closed subset closure sum range sum infty varepsilon chainable every varepsilon there permutation tau operatorname lim sum infty tau

Szymon Głąb 1 ; Jacek Marchwicki 1

1 Institute of Mathematics Łódź University of Technology Wólczańska 215 93-005 Łódź, Poland
@article{10_4064_sm8480_10_2016,
     author = {Szymon G{\l}\k{a}b and Jacek Marchwicki},
     title = {On the set of limit points of conditionally convergent series},
     journal = {Studia Mathematica},
     pages = {221--239},
     year = {2017},
     volume = {237},
     number = {3},
     doi = {10.4064/sm8480-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8480-10-2016/}
}
TY  - JOUR
AU  - Szymon Głąb
AU  - Jacek Marchwicki
TI  - On the set of limit points of conditionally convergent series
JO  - Studia Mathematica
PY  - 2017
SP  - 221
EP  - 239
VL  - 237
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8480-10-2016/
DO  - 10.4064/sm8480-10-2016
LA  - en
ID  - 10_4064_sm8480_10_2016
ER  - 
%0 Journal Article
%A Szymon Głąb
%A Jacek Marchwicki
%T On the set of limit points of conditionally convergent series
%J Studia Mathematica
%D 2017
%P 221-239
%V 237
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8480-10-2016/
%R 10.4064/sm8480-10-2016
%G en
%F 10_4064_sm8480_10_2016
Szymon Głąb; Jacek Marchwicki. On the set of limit points of conditionally convergent series. Studia Mathematica, Tome 237 (2017) no. 3, pp. 221-239. doi: 10.4064/sm8480-10-2016

Cité par Sources :