Uniformly rigid models for rigid actions
Studia Mathematica, Tome 236 (2017) no. 1, pp. 13-31 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We show that any ergodic nonperiodic rigid system can be topologically realized by a uniformly rigid and (topologically) weak mixing topological dynamical system.
DOI : 10.4064/sm8441-8-2016
Keywords: ergodic nonperiodic rigid system topologically realized uniformly rigid topologically weak mixing topological dynamical system

Sebastián Donoso 1 ; Song Shao 2

1 Departamento de Ingeniería Matemática Universidad de Chile Beauchef 851 Santiago, Chile
2 Wu Wen-Tsun Key Laboratory of Mathematics USTC Chinese Academy of Sciences and Department of Mathematics University of Science and Technology of China Hefei, Anhui 230026, P.R. China
@article{10_4064_sm8441_8_2016,
     author = {Sebasti\'an Donoso and Song Shao},
     title = {Uniformly rigid models for rigid actions},
     journal = {Studia Mathematica},
     pages = {13--31},
     year = {2017},
     volume = {236},
     number = {1},
     doi = {10.4064/sm8441-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8441-8-2016/}
}
TY  - JOUR
AU  - Sebastián Donoso
AU  - Song Shao
TI  - Uniformly rigid models for rigid actions
JO  - Studia Mathematica
PY  - 2017
SP  - 13
EP  - 31
VL  - 236
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8441-8-2016/
DO  - 10.4064/sm8441-8-2016
LA  - en
ID  - 10_4064_sm8441_8_2016
ER  - 
%0 Journal Article
%A Sebastián Donoso
%A Song Shao
%T Uniformly rigid models for rigid actions
%J Studia Mathematica
%D 2017
%P 13-31
%V 236
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8441-8-2016/
%R 10.4064/sm8441-8-2016
%G en
%F 10_4064_sm8441_8_2016
Sebastián Donoso; Song Shao. Uniformly rigid models for rigid actions. Studia Mathematica, Tome 236 (2017) no. 1, pp. 13-31. doi: 10.4064/sm8441-8-2016

Cité par Sources :