The Bohr–Pál theorem and the Sobolev space $W_2^{1/2}$
Studia Mathematica, Tome 231 (2015) no. 1, pp. 73-81 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The well-known Bohr–Pál theorem asserts that for every continuous real-valued function $f$ on the circle $\mathbb T$ there exists a change of variable, i.e., a homeomorphism $h$ of $\mathbb T$ onto itself, such that the Fourier series of the superposition $f\circ h$ converges uniformly. Subsequent improvements of this result imply that actually there exists a homeomorphism that brings $f$ into the Sobolev space $W_2^{1/2}(\mathbb T)$. This refined version of the Bohr–Pál theorem does not extend to complex-valued functions. We show that if $\alpha \lt 1/2$, then there exists a complex-valued $f$ that satisfies the Lipschitz condition of order $\alpha $ and at the same time has the property that $f\circ h\notin W_2^{1/2}(\mathbb T)$ for every homeomorphism $h$ of $\mathbb T$.
DOI : 10.4064/sm8438-1-2016
Mots-clés : well known bohr theorem asserts every continuous real valued function circle mathbb there exists change variable homeomorphism mathbb itself fourier series superposition circ converges uniformly subsequent improvements result imply actually there exists homeomorphism brings sobolev space mathbb refined version bohr theorem does extend complex valued functions alpha there exists complex valued satisfies lipschitz condition order alpha time has property circ notin mathbb every homeomorphism mathbb

Vladimir Lebedev  1

1 National Research University Higher School of Economics 34 Tallinskaya St. Moscow, 123458, Russia
@article{10_4064_sm8438_1_2016,
     author = {Vladimir Lebedev},
     title = {The {Bohr{\textendash}P\'al} theorem and the {Sobolev} space $W_2^{1/2}$},
     journal = {Studia Mathematica},
     pages = {73--81},
     year = {2015},
     volume = {231},
     number = {1},
     doi = {10.4064/sm8438-1-2016},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8438-1-2016/}
}
TY  - JOUR
AU  - Vladimir Lebedev
TI  - The Bohr–Pál theorem and the Sobolev space $W_2^{1/2}$
JO  - Studia Mathematica
PY  - 2015
SP  - 73
EP  - 81
VL  - 231
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8438-1-2016/
DO  - 10.4064/sm8438-1-2016
LA  - de
ID  - 10_4064_sm8438_1_2016
ER  - 
%0 Journal Article
%A Vladimir Lebedev
%T The Bohr–Pál theorem and the Sobolev space $W_2^{1/2}$
%J Studia Mathematica
%D 2015
%P 73-81
%V 231
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8438-1-2016/
%R 10.4064/sm8438-1-2016
%G de
%F 10_4064_sm8438_1_2016
Vladimir Lebedev. The Bohr–Pál theorem and the Sobolev space $W_2^{1/2}$. Studia Mathematica, Tome 231 (2015) no. 1, pp. 73-81. doi: 10.4064/sm8438-1-2016

Cité par Sources :