Young’s (in)equality for compact operators
Studia Mathematica, Tome 233 (2016) no. 2, pp. 169-181
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
If $a,b$ are $n\times n$ matrices, T. Ando proved that Young’s inequality is valid for their singular values: if $p \gt 1$ and $1/p+1/q=1$, then $$
\lambda_k(|ab^*|)\le \lambda_k\biggl( \frac1p |a|^p+\frac 1q |b|^q \biggr) \quad\ \text{for all } k. $$ Later, this result was extended to the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. R. Farenick and R. Zeng. In this paper we prove that if $a,b$ are compact operators, then equality holds in Young’s inequality if and only if $|a|^p=|b|^q$.
Keywords:
times matrices ando proved young inequality valid their singular values lambda * lambda biggl frac frac biggr quad text later result extended singular values pair compact operators acting hilbert space erlijman farenick zeng paper prove compact operators equality holds young inequality only
Affiliations des auteurs :
Gabriel Larotonda  1
@article{10_4064_sm8427_5_2016,
author = {Gabriel Larotonda},
title = {Young{\textquoteright}s (in)equality for compact operators},
journal = {Studia Mathematica},
pages = {169--181},
year = {2016},
volume = {233},
number = {2},
doi = {10.4064/sm8427-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8427-5-2016/}
}
Gabriel Larotonda. Young’s (in)equality for compact operators. Studia Mathematica, Tome 233 (2016) no. 2, pp. 169-181. doi: 10.4064/sm8427-5-2016
Cité par Sources :