Young’s (in)equality for compact operators
Studia Mathematica, Tome 233 (2016) no. 2, pp. 169-181

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $a,b$ are $n\times n$ matrices, T. Ando proved that Young’s inequality is valid for their singular values: if $p \gt 1$ and $1/p+1/q=1$, then $$ \lambda_k(|ab^*|)\le \lambda_k\biggl( \frac1p |a|^p+\frac 1q |b|^q \biggr) \quad\ \text{for all } k. $$ Later, this result was extended to the singular values of a pair of compact operators acting on a Hilbert space by J. Erlijman, D. R. Farenick and R. Zeng. In this paper we prove that if $a,b$ are compact operators, then equality holds in Young’s inequality if and only if $|a|^p=|b|^q$.
DOI : 10.4064/sm8427-5-2016
Keywords: times matrices ando proved young inequality valid their singular values lambda * lambda biggl frac frac biggr quad text later result extended singular values pair compact operators acting hilbert space erlijman farenick zeng paper prove compact operators equality holds young inequality only

Gabriel Larotonda 1

1 Instituto de Ciencias Universidad Nacional de General Sarmiento J. M. Gutierrez 1150 (B1613GSX) Los Polvorines Buenos Aires, Argentina
@article{10_4064_sm8427_5_2016,
     author = {Gabriel Larotonda},
     title = {Young{\textquoteright}s (in)equality for compact operators},
     journal = {Studia Mathematica},
     pages = {169--181},
     publisher = {mathdoc},
     volume = {233},
     number = {2},
     year = {2016},
     doi = {10.4064/sm8427-5-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8427-5-2016/}
}
TY  - JOUR
AU  - Gabriel Larotonda
TI  - Young’s (in)equality for compact operators
JO  - Studia Mathematica
PY  - 2016
SP  - 169
EP  - 181
VL  - 233
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8427-5-2016/
DO  - 10.4064/sm8427-5-2016
LA  - en
ID  - 10_4064_sm8427_5_2016
ER  - 
%0 Journal Article
%A Gabriel Larotonda
%T Young’s (in)equality for compact operators
%J Studia Mathematica
%D 2016
%P 169-181
%V 233
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8427-5-2016/
%R 10.4064/sm8427-5-2016
%G en
%F 10_4064_sm8427_5_2016
Gabriel Larotonda. Young’s (in)equality for compact operators. Studia Mathematica, Tome 233 (2016) no. 2, pp. 169-181. doi: 10.4064/sm8427-5-2016

Cité par Sources :