Tameness in Fréchet spaces of analytic functions
Studia Mathematica, Tome 232 (2016) no. 3, pp. 243-266
A Fréchet space $\mathcal {X}$ with a sequence $\{\| \cdot \| _k\}_{k=1}^\infty $ of generating seminorms is called tame if there exists an increasing function $\sigma : \mathbb {N} \rightarrow \mathbb {N}$ such that for every continuous linear operator $T$ from $\mathcal {X}$ into itself, there exist $N_0$ and $C \gt 0$ such that \[ \| T(x)\| _n \leq C\| x\| _{\sigma (n)} \hskip 1em \ \forall x \in \mathcal {X},\, n \geq N_0. \] This property does not depend upon the choice of the fundamental system of seminorms for $\mathcal {X}$ and is a property of the Fréchet space $\mathcal {X}$. In this paper we investigate tameness in the Fréchet spaces $\mathcal {O}(M)$ of analytic functions on Stein manifolds $M$ equipped with the compact-open topology. Actually we will look into tameness in the more general class of nuclear Fréchet spaces with properties $\underline {\rm DN}$ and $\Omega $ of Vogt and then specialize to analytic function spaces. We show that for a Stein manifold $M$, tameness of $\mathcal {O}(M)$ is equivalent to hyperconvexity of $M$.
Mots-clés :
chet space mathcal sequence cdot infty generating seminorms called tame there exists increasing function sigma mathbb rightarrow mathbb every continuous linear operator mathcal itself there exist leq sigma hskip forall mathcal geq property does depend choice fundamental system seminorms mathcal property chet space mathcal paper investigate tameness chet spaces mathcal analytic functions stein manifolds equipped compact open topology actually look tameness general class nuclear chet spaces properties underline omega vogt specialize analytic function spaces stein manifold nbsp tameness mathcal equivalent hyperconvexity nbsp
Affiliations des auteurs :
Aydın Aytuna  1
@article{10_4064_sm8423_3_2016,
author = {Ayd{\i}n Aytuna},
title = {Tameness in {Fr\'echet} spaces of analytic functions},
journal = {Studia Mathematica},
pages = {243--266},
year = {2016},
volume = {232},
number = {3},
doi = {10.4064/sm8423-3-2016},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8423-3-2016/}
}
Aydın Aytuna. Tameness in Fréchet spaces of analytic functions. Studia Mathematica, Tome 232 (2016) no. 3, pp. 243-266. doi: 10.4064/sm8423-3-2016
Cité par Sources :