Universal bounds for positive matrix semigroups
Studia Mathematica, Tome 232 (2016) no. 2, pp. 143-153
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that any compact semigroup of positive $n\times n$ matrices is similar (via a positive diagonal similarity) to a semigroup bounded by $\sqrt {n}$. We give examples to show this bound is best possible. We also consider the effect of additional conditions on the semigroup and obtain improved bounds in some cases.
Keywords:
compact semigroup positive times matrices similar via positive diagonal similarity semigroup bounded sqrt examples bound best possible consider effect additional conditions semigroup obtain improved bounds cases
Affiliations des auteurs :
Leo Livshits 1 ; Gordon MacDonald 2 ; Laurent Marcoux 3 ; Heydar Radjavi 3
@article{10_4064_sm8421_3_2016,
author = {Leo Livshits and Gordon MacDonald and Laurent Marcoux and Heydar Radjavi},
title = {Universal bounds for positive matrix semigroups},
journal = {Studia Mathematica},
pages = {143--153},
publisher = {mathdoc},
volume = {232},
number = {2},
year = {2016},
doi = {10.4064/sm8421-3-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8421-3-2016/}
}
TY - JOUR AU - Leo Livshits AU - Gordon MacDonald AU - Laurent Marcoux AU - Heydar Radjavi TI - Universal bounds for positive matrix semigroups JO - Studia Mathematica PY - 2016 SP - 143 EP - 153 VL - 232 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8421-3-2016/ DO - 10.4064/sm8421-3-2016 LA - en ID - 10_4064_sm8421_3_2016 ER -
%0 Journal Article %A Leo Livshits %A Gordon MacDonald %A Laurent Marcoux %A Heydar Radjavi %T Universal bounds for positive matrix semigroups %J Studia Mathematica %D 2016 %P 143-153 %V 232 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8421-3-2016/ %R 10.4064/sm8421-3-2016 %G en %F 10_4064_sm8421_3_2016
Leo Livshits; Gordon MacDonald; Laurent Marcoux; Heydar Radjavi. Universal bounds for positive matrix semigroups. Studia Mathematica, Tome 232 (2016) no. 2, pp. 143-153. doi: 10.4064/sm8421-3-2016
Cité par Sources :