A reverse entropy power inequality for log-concave random vectors
Studia Mathematica, Tome 235 (2016) no. 1, pp. 17-30
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that the exponent of the entropy of one-dimensional projections of a log-concave random vector defines a $1/5$-seminorm. We make two conjectures concerning reverse entropy power inequalities in the log-concave setting and discuss some examples.
Keywords:
prove exponent entropy one dimensional projections log concave random vector defines seminorm make conjectures concerning reverse entropy power inequalities log concave setting discuss examples
Affiliations des auteurs :
Keith Ball 1 ; Piotr Nayar 2 ; Tomasz Tkocz 1
@article{10_4064_sm8418_6_2016,
author = {Keith Ball and Piotr Nayar and Tomasz Tkocz},
title = {A reverse entropy power inequality for log-concave random vectors},
journal = {Studia Mathematica},
pages = {17--30},
publisher = {mathdoc},
volume = {235},
number = {1},
year = {2016},
doi = {10.4064/sm8418-6-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8418-6-2016/}
}
TY - JOUR AU - Keith Ball AU - Piotr Nayar AU - Tomasz Tkocz TI - A reverse entropy power inequality for log-concave random vectors JO - Studia Mathematica PY - 2016 SP - 17 EP - 30 VL - 235 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8418-6-2016/ DO - 10.4064/sm8418-6-2016 LA - en ID - 10_4064_sm8418_6_2016 ER -
%0 Journal Article %A Keith Ball %A Piotr Nayar %A Tomasz Tkocz %T A reverse entropy power inequality for log-concave random vectors %J Studia Mathematica %D 2016 %P 17-30 %V 235 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8418-6-2016/ %R 10.4064/sm8418-6-2016 %G en %F 10_4064_sm8418_6_2016
Keith Ball; Piotr Nayar; Tomasz Tkocz. A reverse entropy power inequality for log-concave random vectors. Studia Mathematica, Tome 235 (2016) no. 1, pp. 17-30. doi: 10.4064/sm8418-6-2016
Cité par Sources :