Unconditionality for $m$-homogeneous polynomials on $\ell _{\infty }^{n}$
Studia Mathematica, Tome 232 (2016) no. 1, pp. 45-55

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\chi(m,n)$ be the unconditional basis constant of the monomial basis $z^\alpha $, $\alpha \in \mathbb{N}_0^n$ with $|\alpha|=m$, of the Banach space of all $m$-homogeneous polynomials in $n$ complex variables, endowed with the supremum norm on the $n$-dimensional unit polydisc $\mathbb{D}^n$. We prove that the quotient of $\sup_m\sqrt[m]{\sup_m\chi(m,n)}$ and $\sqrt{{n/\!\log n} }$ tends to $1$ as $n\to\infty$. This reflects a quite precise dependence of $\chi(m,n)$ on the degree $m$ of the polynomials and their number $n$ of variables. Moreover, we give an analogous formula for $m$-linear forms, a reformulation of our results in terms of tensor products, and as an application a solution for a problem on Bohr radii.
DOI : 10.4064/sm8386-2-2016
Keywords: chi unconditional basis constant monomial basis nbsp alpha alpha mathbb alpha banach space m homogeneous polynomials complex variables endowed supremum norm n dimensional unit polydisc nbsp mathbb prove quotient sup sqrt sup chi sqrt log tends infty reflects quite precise dependence chi degree polynomials their number variables moreover analogous formula m linear forms reformulation results terms tensor products application solution problem bohr radii

Andreas Defant 1 ; Pablo Sevilla-Peris 2

1 Institut für Mathematik Universität Oldenburg D-26111 Oldenburg, Germany
2 Instituto Universitario de Matemática Pura y Aplicada Universitat Politècnica de València 46022 Valencia, Spain
@article{10_4064_sm8386_2_2016,
     author = {Andreas Defant and Pablo Sevilla-Peris},
     title = {Unconditionality for $m$-homogeneous polynomials on $\ell _{\infty }^{n}$},
     journal = {Studia Mathematica},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8386-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8386-2-2016/}
}
TY  - JOUR
AU  - Andreas Defant
AU  - Pablo Sevilla-Peris
TI  - Unconditionality for $m$-homogeneous polynomials on $\ell _{\infty }^{n}$
JO  - Studia Mathematica
PY  - 2016
SP  - 45
EP  - 55
VL  - 232
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8386-2-2016/
DO  - 10.4064/sm8386-2-2016
LA  - en
ID  - 10_4064_sm8386_2_2016
ER  - 
%0 Journal Article
%A Andreas Defant
%A Pablo Sevilla-Peris
%T Unconditionality for $m$-homogeneous polynomials on $\ell _{\infty }^{n}$
%J Studia Mathematica
%D 2016
%P 45-55
%V 232
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8386-2-2016/
%R 10.4064/sm8386-2-2016
%G en
%F 10_4064_sm8386_2_2016
Andreas Defant; Pablo Sevilla-Peris. Unconditionality for $m$-homogeneous polynomials on $\ell _{\infty }^{n}$. Studia Mathematica, Tome 232 (2016) no. 1, pp. 45-55. doi: 10.4064/sm8386-2-2016

Cité par Sources :