Weighted embedding theorems for radial Besov and Triebel–Lizorkin spaces
Studia Mathematica, Tome 233 (2016) no. 1, pp. 47-65
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the continuity and compactness of embeddings for radial Besov and Triebel–Lizorkin spaces with weights in the Muckenhoupt class $A_\infty $. The main tool is a discretization in terms of an almost orthogonal wavelet expansion adapted to the radial situation.
Keywords:
study continuity compactness embeddings radial besov triebel lizorkin spaces weights muckenhoupt class infty main tool discretization terms almost orthogonal wavelet expansion adapted radial situation
Affiliations des auteurs :
Pablo L. De Nápoli 1 ; Irene Drelichman 2 ; Nicolas Saintier 3
@article{10_4064_sm8383_4_2016,
author = {Pablo L. De N\'apoli and Irene Drelichman and Nicolas Saintier},
title = {Weighted embedding theorems for radial {Besov} and {Triebel{\textendash}Lizorkin} spaces},
journal = {Studia Mathematica},
pages = {47--65},
publisher = {mathdoc},
volume = {233},
number = {1},
year = {2016},
doi = {10.4064/sm8383-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8383-4-2016/}
}
TY - JOUR AU - Pablo L. De Nápoli AU - Irene Drelichman AU - Nicolas Saintier TI - Weighted embedding theorems for radial Besov and Triebel–Lizorkin spaces JO - Studia Mathematica PY - 2016 SP - 47 EP - 65 VL - 233 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8383-4-2016/ DO - 10.4064/sm8383-4-2016 LA - en ID - 10_4064_sm8383_4_2016 ER -
%0 Journal Article %A Pablo L. De Nápoli %A Irene Drelichman %A Nicolas Saintier %T Weighted embedding theorems for radial Besov and Triebel–Lizorkin spaces %J Studia Mathematica %D 2016 %P 47-65 %V 233 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8383-4-2016/ %R 10.4064/sm8383-4-2016 %G en %F 10_4064_sm8383_4_2016
Pablo L. De Nápoli; Irene Drelichman; Nicolas Saintier. Weighted embedding theorems for radial Besov and Triebel–Lizorkin spaces. Studia Mathematica, Tome 233 (2016) no. 1, pp. 47-65. doi: 10.4064/sm8383-4-2016
Cité par Sources :