On subspaces of invariant vectors
Studia Mathematica, Tome 236 (2017) no. 1, pp. 1-11 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $X_{\pi }$ be the subspace of fixed vectors for a uniformly bounded representation $\pi $ of a group $G$ on a Banach space $X$. We study the problem of the existence and uniqueness of a subspace $Y$ that complements $X_{\pi }$ in $X$. Similar questions for $G$-invariant complement to $X_{\pi }$ are considered. We prove that every non-amenable discrete group $G$ has a representation with non-complemented $X_{\pi }$ and find some conditions that provide a $G$-invariant complement. A special attention is given to representations on $C(K)$ that arise from an action of $G$ on a metric compact $K$.
DOI : 10.4064/sm8378-11-2016
Keywords: subspace fixed vectors uniformly bounded representation group banach space study problem existence uniqueness subspace complements similar questions g invariant complement considered prove every non amenable discrete group has representation non complemented conditions provide g invariant complement special attention given representations arise action metric compact

Tatiana Shulman  1

1 Institute of Mathematics Polish Academy of Sciences 00-656 Warszawa, Poland
@article{10_4064_sm8378_11_2016,
     author = {Tatiana Shulman},
     title = {On subspaces of invariant vectors},
     journal = {Studia Mathematica},
     pages = {1--11},
     year = {2017},
     volume = {236},
     number = {1},
     doi = {10.4064/sm8378-11-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8378-11-2016/}
}
TY  - JOUR
AU  - Tatiana Shulman
TI  - On subspaces of invariant vectors
JO  - Studia Mathematica
PY  - 2017
SP  - 1
EP  - 11
VL  - 236
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8378-11-2016/
DO  - 10.4064/sm8378-11-2016
LA  - en
ID  - 10_4064_sm8378_11_2016
ER  - 
%0 Journal Article
%A Tatiana Shulman
%T On subspaces of invariant vectors
%J Studia Mathematica
%D 2017
%P 1-11
%V 236
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8378-11-2016/
%R 10.4064/sm8378-11-2016
%G en
%F 10_4064_sm8378_11_2016
Tatiana Shulman. On subspaces of invariant vectors. Studia Mathematica, Tome 236 (2017) no. 1, pp. 1-11. doi: 10.4064/sm8378-11-2016

Cité par Sources :