The dual form of the approximation property for a Banach space and a subspace
Studia Mathematica, Tome 231 (2015) no. 3, pp. 287-292

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a Banach space $X$ and a subspace $Y$, the pair $(X,Y)$ is said to have the approximation property (AP) provided there is a net of finite rank bounded linear operators on $X$ all of which leave the subspace $Y$ invariant such that the net converges uniformly on compact subsets of $X$ to the identity operator. In particular, if the pair $(X,Y)$ has the AP then $X$, $Y$, and the quotient space $X/Y$ have the classical Grothendieck AP. The main result is an easy to apply dual formulation of this property. Applications are given to three-space properties; in particular, if $X$ has the approximation property and its subspace $Y$ is ${\mathcal {L}}_\infty $, then $X/Y$ has the approximation property.
DOI : 10.4064/sm8367-2-2016
Keywords: given banach space subspace pair said have approximation property provided there net finite rank bounded linear operators which leave subspace invariant net converges uniformly compact subsets identity operator particular pair has quotient space have classical grothendieck main result easy apply dual formulation property applications given three space properties particular has approximation property its subspace mathcal infty has approximation property

T. Figiel 1 ; W. B. Johnson 2

1 Institute of Mathematics Polish Academy of Sciences Branch in Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
2 Department of Mathematics Texas A&M University College Station, TX 77843-3368, U.S.A.
@article{10_4064_sm8367_2_2016,
     author = {T. Figiel and W. B. Johnson},
     title = {The dual form of the approximation property for a {Banach} space and a subspace},
     journal = {Studia Mathematica},
     pages = {287--292},
     publisher = {mathdoc},
     volume = {231},
     number = {3},
     year = {2015},
     doi = {10.4064/sm8367-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8367-2-2016/}
}
TY  - JOUR
AU  - T. Figiel
AU  - W. B. Johnson
TI  - The dual form of the approximation property for a Banach space and a subspace
JO  - Studia Mathematica
PY  - 2015
SP  - 287
EP  - 292
VL  - 231
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8367-2-2016/
DO  - 10.4064/sm8367-2-2016
LA  - en
ID  - 10_4064_sm8367_2_2016
ER  - 
%0 Journal Article
%A T. Figiel
%A W. B. Johnson
%T The dual form of the approximation property for a Banach space and a subspace
%J Studia Mathematica
%D 2015
%P 287-292
%V 231
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8367-2-2016/
%R 10.4064/sm8367-2-2016
%G en
%F 10_4064_sm8367_2_2016
T. Figiel; W. B. Johnson. The dual form of the approximation property for a Banach space and a subspace. Studia Mathematica, Tome 231 (2015) no. 3, pp. 287-292. doi: 10.4064/sm8367-2-2016

Cité par Sources :