1Department of Mathematics Wesleyan University Middletown, CT 06459, U.S.A. 2KdV Institute for Mathematics University of Amsterdam Science Park 105-107 P.O. Box 94248 1090 GE Amsterdam, The Netherlands
Studia Mathematica, Tome 231 (2015) no. 3, pp. 269-285
An archimedean vector lattice $A$ might have the following properties:
(1)
the sigma property ($\sigma$): For each $\{a_n\}_{n\in\mathbb N} \operatorname{con} A^+$ there are $\{\lambda_n\}_{n\in\mathbb N}\subseteq (0,\infty)$ and $a\in A$ with $\lambda_n a_n \le a$ for each $n$;
(2) order convergence and relative uniform convergence are equivalent, denoted $(\operatorname{OC} \Rightarrow$$\operatorname{RUC})$: if $a_n \downarrow 0$ then $a_n \to 0$ r.u.
The conjunction of these two is called strongly Egoroff.
We consider vector lattices of the form $D(X)$ (all extended real
continuous functions on the compact space $X$) showing that $(\sigma)$ and $(\operatorname{OC} \Rightarrow \operatorname{RUC})$ are
equivalent, and equivalent to this property of $X$: $(\mathrm{E})$ the
intersection of any sequence of dense cozero-sets contains
another. (In case $X$ is zero-dimensional, $(\mathrm{E})$ holds iff
the clopen algebra $\operatorname{clop} X$ of $X$ is a ‘Egoroff Boolean algebra’.)
A crucial part of the proof is this theorem about any compact
$X$: For any countable intersection of dense cozero-sets $U$, there is
$u_n \downarrow 0$ in $C(X)$ with $ \{x\in X : u_n(x) \downarrow 0\} =
U. $ Then, we make a construction of many new $X$ with
$(\mathrm{E})$ (thus, dually, strongly Egoroff $D(X)$), which can be
F-spaces, connected, or zero-dimensional, depending on the input to
the construction. This results in many new Egoroff Boolean algebras
which are also weakly countably complete.
Keywords:
archimedean vector lattice might have following properties sigma property sigma each mathbb operatorname con there lambda mathbb subseteq infty lambda each nbsp order convergence relative uniform convergence equivalent denoted operatorname rightarrow operatorname ruc downarrow conjunction these called strongly egoroff consider vector lattices form extended real continuous functions compact space showing sigma operatorname rightarrow operatorname ruc equivalent equivalent property mathrm intersection sequence dense cozero sets contains another zero dimensional mathrm holds clopen algebra operatorname clop egoroff boolean algebra crucial part proof theorem about compact countable intersection dense cozero sets there downarrow downarrow make construction many mathrm dually strongly egoroff which f spaces connected zero dimensional depending input construction results many egoroff boolean algebras which weakly countably complete
Affiliations des auteurs :
A. W. Hager 
1
;
J. van Mill 
2
1
Department of Mathematics Wesleyan University Middletown, CT 06459, U.S.A.
2
KdV Institute for Mathematics University of Amsterdam Science Park 105-107 P.O. Box 94248 1090 GE Amsterdam, The Netherlands
@article{10_4064_sm8363_2_2016,
author = {A. W. Hager and J. van Mill},
title = {Egoroff, $\sigma $, and convergence properties in some archimedean vector lattices},
journal = {Studia Mathematica},
pages = {269--285},
year = {2015},
volume = {231},
number = {3},
doi = {10.4064/sm8363-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8363-2-2016/}
}
TY - JOUR
AU - A. W. Hager
AU - J. van Mill
TI - Egoroff, $\sigma $, and convergence properties in some archimedean vector lattices
JO - Studia Mathematica
PY - 2015
SP - 269
EP - 285
VL - 231
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8363-2-2016/
DO - 10.4064/sm8363-2-2016
LA - en
ID - 10_4064_sm8363_2_2016
ER -
%0 Journal Article
%A A. W. Hager
%A J. van Mill
%T Egoroff, $\sigma $, and convergence properties in some archimedean vector lattices
%J Studia Mathematica
%D 2015
%P 269-285
%V 231
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8363-2-2016/
%R 10.4064/sm8363-2-2016
%G en
%F 10_4064_sm8363_2_2016
A. W. Hager; J. van Mill. Egoroff, $\sigma $, and convergence properties in some archimedean vector lattices. Studia Mathematica, Tome 231 (2015) no. 3, pp. 269-285. doi: 10.4064/sm8363-2-2016