Multidimensional self-affine sets: non-empty interior and the set of uniqueness
Studia Mathematica, Tome 229 (2015) no. 3, pp. 223-232 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $M$ be a $d\times d$ real contracting matrix. We consider the self-affine iterated function system $\{Mv-u, Mv+u\}$, where $u$ is a cyclic vector. Our main result is as follows: if $|\det M|\ge 2^{-1/d}$, then the attractor $A_M$ has non-empty interior. We also consider the set $\mathcal U_M$ of points in $A_M$ which have a unique address. We show that unless $M$ belongs to a very special (non-generic) class, the Hausdorff dimension of $\mathcal U_M$ is positive. For this special class the full description of $\mathcal U_M$ is given as well. This paper continues our work begun in two previous papers.
DOI : 10.4064/sm8359-1-2016
Keywords: times real contracting matrix consider self affine iterated function system mv u where cyclic vector main result follows det attractor has non empty interior consider set mathcal points which have unique address unless belongs special non generic class hausdorff dimension mathcal positive special class full description mathcal given paper continues work begun previous papers

Kevin G. Hare  1   ; Nikita Sidorov  2

1 Department of Pure Mathematics University of Waterloo Waterloo, Ontario, Canada N2L 3G1
2 School of Mathematics The University of Manchester Oxford Road Manchester M13 9PL, United Kingdom
@article{10_4064_sm8359_1_2016,
     author = {Kevin G. Hare and Nikita Sidorov},
     title = {Multidimensional self-affine sets: non-empty interior and the set of uniqueness},
     journal = {Studia Mathematica},
     pages = {223--232},
     year = {2015},
     volume = {229},
     number = {3},
     doi = {10.4064/sm8359-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8359-1-2016/}
}
TY  - JOUR
AU  - Kevin G. Hare
AU  - Nikita Sidorov
TI  - Multidimensional self-affine sets: non-empty interior and the set of uniqueness
JO  - Studia Mathematica
PY  - 2015
SP  - 223
EP  - 232
VL  - 229
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8359-1-2016/
DO  - 10.4064/sm8359-1-2016
LA  - en
ID  - 10_4064_sm8359_1_2016
ER  - 
%0 Journal Article
%A Kevin G. Hare
%A Nikita Sidorov
%T Multidimensional self-affine sets: non-empty interior and the set of uniqueness
%J Studia Mathematica
%D 2015
%P 223-232
%V 229
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8359-1-2016/
%R 10.4064/sm8359-1-2016
%G en
%F 10_4064_sm8359_1_2016
Kevin G. Hare; Nikita Sidorov. Multidimensional self-affine sets: non-empty interior and the set of uniqueness. Studia Mathematica, Tome 229 (2015) no. 3, pp. 223-232. doi: 10.4064/sm8359-1-2016

Cité par Sources :