Muckenhoupt–Wheeden conjectures in higher dimensions
Studia Mathematica, Tome 233 (2016) no. 1, pp. 25-45
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In recent work by Reguera and Thiele (2012) and by Reguera and Scurry (2013), two conjectures about joint weighted estimates for Calderón–Zygmund operators and the Hardy–Littlewood maximal function were refuted in the one-dimensional case. One of the key ingredients for these results is the construction of weights for which the value of the Hilbert transform is substantially bigger than that of the maximal function. In this work, we show that a similar construction is possible for classical Calderón–Zygmund operators in higher dimensions. This allows us to fully disprove the conjectures.
Keywords:
recent work reguera thiele reguera scurry conjectures about joint weighted estimates calder zygmund operators hardy littlewood maximal function refuted one dimensional key ingredients these results construction weights which value hilbert transform substantially bigger maximal function work similar construction possible classical calder zygmund operators higher dimensions allows fully disprove conjectures
Affiliations des auteurs :
Alberto Criado 1 ; Fernando Soria 2
@article{10_4064_sm8357_3_2016,
author = {Alberto Criado and Fernando Soria},
title = {Muckenhoupt{\textendash}Wheeden conjectures in higher dimensions},
journal = {Studia Mathematica},
pages = {25--45},
publisher = {mathdoc},
volume = {233},
number = {1},
year = {2016},
doi = {10.4064/sm8357-3-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8357-3-2016/}
}
TY - JOUR AU - Alberto Criado AU - Fernando Soria TI - Muckenhoupt–Wheeden conjectures in higher dimensions JO - Studia Mathematica PY - 2016 SP - 25 EP - 45 VL - 233 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8357-3-2016/ DO - 10.4064/sm8357-3-2016 LA - en ID - 10_4064_sm8357_3_2016 ER -
Alberto Criado; Fernando Soria. Muckenhoupt–Wheeden conjectures in higher dimensions. Studia Mathematica, Tome 233 (2016) no. 1, pp. 25-45. doi: 10.4064/sm8357-3-2016
Cité par Sources :