Uncountable sets of unit vectors that are separated by more than 1
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 232 (2016) no. 1, pp. 19-44
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $X$ be a Banach space. We study the circumstances under which there exists an uncountable set $\mathcal A\subset X$ of unit vectors such that $\|x-y\| \gt 1$ for any distinct $x,y\in \mathcal A$. We prove that such a set exists if $X$ is quasi-reflexive and non-separable; if $X$ is additionally super-reflexive then one can have $\|x-y\|\geqslant 1+\varepsilon$ for some $\varepsilon \gt 0$ that depends only on $X$. If $K$ is a non-metrisable compact, Hausdorff space, then the unit sphere of $X=C(K)$ also contains such a subset; if moreover $K$ is perfectly normal, then one can find such a set with cardinality equal to the density of $X$; this solves a problem left open by S. K. Mercourakis and G. Vassiliadis (2015).
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
banach space study circumstances under which there exists uncountable set mathcal subset unit vectors x y distinct mathcal prove set exists quasi reflexive non separable additionally super reflexive have x y geqslant varepsilon varepsilon depends only non metrisable compact hausdorff space unit sphere contains subset moreover perfectly normal set cardinality equal density solves nbsp problem nbsp nbsp mercourakis nbsp vassiliadis
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Tomasz Kania 1 ; Tomasz Kochanek 2
@article{10_4064_sm8353_2_2016,
     author = {Tomasz Kania and Tomasz Kochanek},
     title = {Uncountable sets of unit vectors that are separated by more than 1},
     journal = {Studia Mathematica},
     pages = {19--44},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8353-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8353-2-2016/}
}
                      
                      
                    TY - JOUR AU - Tomasz Kania AU - Tomasz Kochanek TI - Uncountable sets of unit vectors that are separated by more than 1 JO - Studia Mathematica PY - 2016 SP - 19 EP - 44 VL - 232 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8353-2-2016/ DO - 10.4064/sm8353-2-2016 LA - en ID - 10_4064_sm8353_2_2016 ER -
%0 Journal Article %A Tomasz Kania %A Tomasz Kochanek %T Uncountable sets of unit vectors that are separated by more than 1 %J Studia Mathematica %D 2016 %P 19-44 %V 232 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8353-2-2016/ %R 10.4064/sm8353-2-2016 %G en %F 10_4064_sm8353_2_2016
Tomasz Kania; Tomasz Kochanek. Uncountable sets of unit vectors that are separated by more than 1. Studia Mathematica, Tome 232 (2016) no. 1, pp. 19-44. doi: 10.4064/sm8353-2-2016
Cité par Sources :
