Uncountable sets of unit vectors that are separated by more than 1
Studia Mathematica, Tome 232 (2016) no. 1, pp. 19-44

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a Banach space. We study the circumstances under which there exists an uncountable set $\mathcal A\subset X$ of unit vectors such that $\|x-y\| \gt 1$ for any distinct $x,y\in \mathcal A$. We prove that such a set exists if $X$ is quasi-reflexive and non-separable; if $X$ is additionally super-reflexive then one can have $\|x-y\|\geqslant 1+\varepsilon$ for some $\varepsilon \gt 0$ that depends only on $X$. If $K$ is a non-metrisable compact, Hausdorff space, then the unit sphere of $X=C(K)$ also contains such a subset; if moreover $K$ is perfectly normal, then one can find such a set with cardinality equal to the density of $X$; this solves a problem left open by S. K. Mercourakis and G. Vassiliadis (2015).
DOI : 10.4064/sm8353-2-2016
Keywords: banach space study circumstances under which there exists uncountable set mathcal subset unit vectors x y distinct mathcal prove set exists quasi reflexive non separable additionally super reflexive have x y geqslant varepsilon varepsilon depends only non metrisable compact hausdorff space unit sphere contains subset moreover perfectly normal set cardinality equal density solves nbsp problem nbsp nbsp mercourakis nbsp vassiliadis

Tomasz Kania 1 ; Tomasz Kochanek 2

1 Mathematics Institute University of Warwick Gibbet Hill Rd Coventry, CV4 7AL, England
2 Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland and Institute of Mathematics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_sm8353_2_2016,
     author = {Tomasz Kania and Tomasz Kochanek},
     title = {Uncountable sets of unit vectors that are separated by more than 1},
     journal = {Studia Mathematica},
     pages = {19--44},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8353-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8353-2-2016/}
}
TY  - JOUR
AU  - Tomasz Kania
AU  - Tomasz Kochanek
TI  - Uncountable sets of unit vectors that are separated by more than 1
JO  - Studia Mathematica
PY  - 2016
SP  - 19
EP  - 44
VL  - 232
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8353-2-2016/
DO  - 10.4064/sm8353-2-2016
LA  - en
ID  - 10_4064_sm8353_2_2016
ER  - 
%0 Journal Article
%A Tomasz Kania
%A Tomasz Kochanek
%T Uncountable sets of unit vectors that are separated by more than 1
%J Studia Mathematica
%D 2016
%P 19-44
%V 232
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8353-2-2016/
%R 10.4064/sm8353-2-2016
%G en
%F 10_4064_sm8353_2_2016
Tomasz Kania; Tomasz Kochanek. Uncountable sets of unit vectors that are separated by more than 1. Studia Mathematica, Tome 232 (2016) no. 1, pp. 19-44. doi: 10.4064/sm8353-2-2016

Cité par Sources :