Atomic decompositions for Hardy spaces related to Schrödinger operators
Studia Mathematica, Tome 239 (2017) no. 2, pp. 101-122
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathbf {L}^{U}= -\boldsymbol \Delta +U$ be a Schrödinger operator on ${\mathbb {R}^d}$, where $U\in L^1_{\rm loc}({\mathbb {R}^d})$ is a non-negative potential and $d\geq 3$. The Hardy space $H^1(\mathbf {L}^{U})$ is defined in terms of the maximal function of the semigroup $\mathbf {K}_{t}^{U} = \exp(-t\mathbf {L}^{U})$, namely $$H^1(\mathbf {L}^{U}) = \left \{f\in {L^1({\mathbb {R}^d})}:\| f \| _{H^1(\mathbf {L}^{U})}:= \left \| \sup_{t \gt 0} | \mathbf {K}_{t}^{U}f | \right\|_{L^1({\mathbb {R}^d})} \lt \infty \right\}.$$ Assume that $U=V+W$, where $V\geq 0$ satisfies the global Kato condition $$\sup_{x\in {\mathbb {R}^d}} \int _{{\mathbb {R}^d}} V(y)|x-y|^{2-d} \,dy \lt \infty .$$ We prove that, under certain assumptions on $W\geq 0$, the space $H^1(\mathbf {L}^{U})$ admits an atomic decomposition of local type. An atom $a$ for $H^1(\mathbf {L}^{U})$ either is of the form $a(x)=|Q|^{-1}\chi _Q(x)$, where $Q$ are special cubes determined by $W$, or satisfies the cancellation condition $\int _{\mathbb {R}^d}a(x)\omega (x)\, dx=0$, where $\omega $ is given by $\omega (x) = \lim_{t\to \infty } \mathbf {K}_{t}^{V}\mathbf {1}(x)$. Furthermore, we show that, in some cases, the above cancellation condition can be replaced by $\int _{\mathbb {R}^d}a(x)\, dx = 0$. However, we construct an example where the atomic spaces with these two cancellation conditions are not equivalent as Banach spaces.
Keywords:
mathbf boldsymbol delta schr dinger operator mathbb where loc mathbb nbsp non negative potential geq hardy space mathbf defined terms maximal function semigroup mathbf exp t mathbf namely mathbf mathbb mathbf sup mathbf right mathbb infty right assume where geq satisfies global kato condition sup mathbb int mathbb x y d infty prove under certain assumptions geq space mathbf admits atomic decomposition local type atom mathbf either form chi where special cubes determined satisfies cancellation condition int mathbb omega where omega given omega lim infty mathbf mathbf furthermore nbsp cases above cancellation condition replaced int mathbb however construct example where atomic spaces these cancellation conditions equivalent banach spaces
Affiliations des auteurs :
Marcin Preisner 1
@article{10_4064_sm8338_2_2017,
author = {Marcin Preisner},
title = {Atomic decompositions for {Hardy} spaces related to {Schr\"odinger} operators},
journal = {Studia Mathematica},
pages = {101--122},
publisher = {mathdoc},
volume = {239},
number = {2},
year = {2017},
doi = {10.4064/sm8338-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8338-2-2017/}
}
TY - JOUR AU - Marcin Preisner TI - Atomic decompositions for Hardy spaces related to Schrödinger operators JO - Studia Mathematica PY - 2017 SP - 101 EP - 122 VL - 239 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8338-2-2017/ DO - 10.4064/sm8338-2-2017 LA - en ID - 10_4064_sm8338_2_2017 ER -
Marcin Preisner. Atomic decompositions for Hardy spaces related to Schrödinger operators. Studia Mathematica, Tome 239 (2017) no. 2, pp. 101-122. doi: 10.4064/sm8338-2-2017
Cité par Sources :