Atomic decompositions for Hardy spaces related to Schrödinger operators
Studia Mathematica, Tome 239 (2017) no. 2, pp. 101-122

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathbf {L}^{U}= -\boldsymbol \Delta +U$ be a Schrödinger operator on ${\mathbb {R}^d}$, where $U\in L^1_{\rm loc}({\mathbb {R}^d})$ is a non-negative potential and $d\geq 3$. The Hardy space $H^1(\mathbf {L}^{U})$ is defined in terms of the maximal function of the semigroup $\mathbf {K}_{t}^{U} = \exp(-t\mathbf {L}^{U})$, namely $$H^1(\mathbf {L}^{U}) = \left \{f\in {L^1({\mathbb {R}^d})}:\| f \| _{H^1(\mathbf {L}^{U})}:= \left \| \sup_{t \gt 0} | \mathbf {K}_{t}^{U}f | \right\|_{L^1({\mathbb {R}^d})} \lt \infty \right\}.$$ Assume that $U=V+W$, where $V\geq 0$ satisfies the global Kato condition $$\sup_{x\in {\mathbb {R}^d}} \int _{{\mathbb {R}^d}} V(y)|x-y|^{2-d} \,dy \lt \infty .$$ We prove that, under certain assumptions on $W\geq 0$, the space $H^1(\mathbf {L}^{U})$ admits an atomic decomposition of local type. An atom $a$ for $H^1(\mathbf {L}^{U})$ either is of the form $a(x)=|Q|^{-1}\chi _Q(x)$, where $Q$ are special cubes determined by $W$, or satisfies the cancellation condition $\int _{\mathbb {R}^d}a(x)\omega (x)\, dx=0$, where $\omega $ is given by $\omega (x) = \lim_{t\to \infty } \mathbf {K}_{t}^{V}\mathbf {1}(x)$. Furthermore, we show that, in some cases, the above cancellation condition can be replaced by $\int _{\mathbb {R}^d}a(x)\, dx = 0$. However, we construct an example where the atomic spaces with these two cancellation conditions are not equivalent as Banach spaces.
DOI : 10.4064/sm8338-2-2017
Keywords: mathbf boldsymbol delta schr dinger operator mathbb where loc mathbb nbsp non negative potential geq hardy space mathbf defined terms maximal function semigroup mathbf exp t mathbf namely mathbf mathbb mathbf sup mathbf right mathbb infty right assume where geq satisfies global kato condition sup mathbb int mathbb x y d infty prove under certain assumptions geq space mathbf admits atomic decomposition local type atom mathbf either form chi where special cubes determined satisfies cancellation condition int mathbb omega where omega given omega lim infty mathbf mathbf furthermore nbsp cases above cancellation condition replaced int mathbb however construct example where atomic spaces these cancellation conditions equivalent banach spaces

Marcin Preisner 1

1
@article{10_4064_sm8338_2_2017,
     author = {Marcin Preisner},
     title = {Atomic decompositions for {Hardy} spaces related to {Schr\"odinger} operators},
     journal = {Studia Mathematica},
     pages = {101--122},
     publisher = {mathdoc},
     volume = {239},
     number = {2},
     year = {2017},
     doi = {10.4064/sm8338-2-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8338-2-2017/}
}
TY  - JOUR
AU  - Marcin Preisner
TI  - Atomic decompositions for Hardy spaces related to Schrödinger operators
JO  - Studia Mathematica
PY  - 2017
SP  - 101
EP  - 122
VL  - 239
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8338-2-2017/
DO  - 10.4064/sm8338-2-2017
LA  - en
ID  - 10_4064_sm8338_2_2017
ER  - 
%0 Journal Article
%A Marcin Preisner
%T Atomic decompositions for Hardy spaces related to Schrödinger operators
%J Studia Mathematica
%D 2017
%P 101-122
%V 239
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8338-2-2017/
%R 10.4064/sm8338-2-2017
%G en
%F 10_4064_sm8338_2_2017
Marcin Preisner. Atomic decompositions for Hardy spaces related to Schrödinger operators. Studia Mathematica, Tome 239 (2017) no. 2, pp. 101-122. doi: 10.4064/sm8338-2-2017

Cité par Sources :