Asymptotically conformal classes and non-Strebel points
Studia Mathematica, Tome 233 (2016) no. 1, pp. 13-24
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $T(\varDelta )$ be the universal Teichmüller space on the unit disk $\varDelta $ and $T_0(\varDelta )$ be the set of asymptotically conformal classes in $T(\varDelta )$. Suppose that $\mu $ is a Beltrami differential on $\varDelta $ with $[\mu ]\in T_0(\varDelta )$. It is an interesting question whether $[t\mu ]$ belongs to $T_0(\varDelta )$ for general $t\not =0, 1$. In this paper, it is shown that there exists a Beltrami differential $\mu \in [0]$ such that $[t\mu ]$ is a non-trivial non-Strebel point for any $t\in (-{1/{\| \mu \| }_\infty },{1/{\| \mu \| }_\infty })\setminus \{0,1\} $.
Keywords:
vardelta universal teichm ller space unit disk vardelta vardelta set asymptotically conformal classes vardelta suppose beltrami differential vardelta vardelta interesting question whether belongs vardelta general paper shown there exists beltrami differential non trivial non strebel point infty infty setminus
Affiliations des auteurs :
Guowu Yao 1
@article{10_4064_sm8329_4_2016,
author = {Guowu Yao},
title = {Asymptotically conformal classes and {non-Strebel} points},
journal = {Studia Mathematica},
pages = {13--24},
publisher = {mathdoc},
volume = {233},
number = {1},
year = {2016},
doi = {10.4064/sm8329-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8329-4-2016/}
}
Guowu Yao. Asymptotically conformal classes and non-Strebel points. Studia Mathematica, Tome 233 (2016) no. 1, pp. 13-24. doi: 10.4064/sm8329-4-2016
Cité par Sources :