Asymptotically conformal classes and non-Strebel points
Studia Mathematica, Tome 233 (2016) no. 1, pp. 13-24

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T(\varDelta )$ be the universal Teichmüller space on the unit disk $\varDelta $ and $T_0(\varDelta )$ be the set of asymptotically conformal classes in $T(\varDelta )$. Suppose that $\mu $ is a Beltrami differential on $\varDelta $ with $[\mu ]\in T_0(\varDelta )$. It is an interesting question whether $[t\mu ]$ belongs to $T_0(\varDelta )$ for general $t\not =0, 1$. In this paper, it is shown that there exists a Beltrami differential $\mu \in [0]$ such that $[t\mu ]$ is a non-trivial non-Strebel point for any $t\in (-{1/{\| \mu \| }_\infty },{1/{\| \mu \| }_\infty })\setminus \{0,1\} $.
DOI : 10.4064/sm8329-4-2016
Keywords: vardelta universal teichm ller space unit disk vardelta vardelta set asymptotically conformal classes vardelta suppose beltrami differential vardelta vardelta interesting question whether belongs vardelta general paper shown there exists beltrami differential non trivial non strebel point infty infty setminus

Guowu Yao 1

1 Department of Mathematical Sciences Tsinghua University 100084 Beijing, People’s Republic of China
@article{10_4064_sm8329_4_2016,
     author = {Guowu Yao},
     title = {Asymptotically conformal classes and {non-Strebel} points},
     journal = {Studia Mathematica},
     pages = {13--24},
     publisher = {mathdoc},
     volume = {233},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8329-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8329-4-2016/}
}
TY  - JOUR
AU  - Guowu Yao
TI  - Asymptotically conformal classes and non-Strebel points
JO  - Studia Mathematica
PY  - 2016
SP  - 13
EP  - 24
VL  - 233
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8329-4-2016/
DO  - 10.4064/sm8329-4-2016
LA  - en
ID  - 10_4064_sm8329_4_2016
ER  - 
%0 Journal Article
%A Guowu Yao
%T Asymptotically conformal classes and non-Strebel points
%J Studia Mathematica
%D 2016
%P 13-24
%V 233
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8329-4-2016/
%R 10.4064/sm8329-4-2016
%G en
%F 10_4064_sm8329_4_2016
Guowu Yao. Asymptotically conformal classes and non-Strebel points. Studia Mathematica, Tome 233 (2016) no. 1, pp. 13-24. doi: 10.4064/sm8329-4-2016

Cité par Sources :