1Institute of Mathematics Polish Academy of Sciences 00-656 Warszawa, Poland and Chebyshev Laboratory St. Petersburg State University 14th Line V.O., 29B 199178 St. Petersburg, Russia and St. Petersburg Department of Steklov Mathematical Institute Russian Academy of Sciences (PDMI RAS) 27, Fontanka St. 191023 St. Petersburg, Russia <a href="http://www.chebyshev.spb.ru/DmitriyStolyarov">http://www.chebyshev.spb.ru/DmitriyStolyarov</a> 2St. Petersburg Department of Steklov Mathematical Institute Russian Academy of Sciences (PDMI RAS) 27, Fontanka St. 191023 St. Petersburg, Russia 3Chebyshev Laboratory St. Petersburg State University 14th Line V.O., 29B 199178 St. Petersburg, Russia and St. Petersburg Department of Steklov Mathematical Institute Russian Academy of Sciences (PDMI RAS) 27, Fontanka St. 191023 St. Petersburg, Russia <a href="http://www.chebyshev.spb.ru/pavelzatitskiy">http://www.chebyshev.spb.ru/pavelzatitskiy</a>
Studia Mathematica, Tome 231 (2015) no. 3, pp. 257-267
We obtain sharp bounds for the monotonic rearrangement operator from “dyadic-type” classes to “continuous” ones; in particular, for the BMO space and Muckenhoupt classes. The idea is to connect the problem with a simple geometric construction named $\alpha $-extension.
Keywords:
obtain sharp bounds monotonic rearrangement operator dyadic type classes continuous particular bmo space muckenhoupt classes idea connect problem simple geometric construction named alpha extension
Affiliations des auteurs :
Dmitriy M. Stolyarov 
1
;
Vasily I. Vasyunin 
2
;
Pavel B. Zatitskiy 
3
1
Institute of Mathematics Polish Academy of Sciences 00-656 Warszawa, Poland and Chebyshev Laboratory St. Petersburg State University 14th Line V.O., 29B 199178 St. Petersburg, Russia and St. Petersburg Department of Steklov Mathematical Institute Russian Academy of Sciences (PDMI RAS) 27, Fontanka St. 191023 St. Petersburg, Russia <a href="http://www.chebyshev.spb.ru/DmitriyStolyarov">http://www.chebyshev.spb.ru/DmitriyStolyarov</a>
2
St. Petersburg Department of Steklov Mathematical Institute Russian Academy of Sciences (PDMI RAS) 27, Fontanka St. 191023 St. Petersburg, Russia
3
Chebyshev Laboratory St. Petersburg State University 14th Line V.O., 29B 199178 St. Petersburg, Russia and St. Petersburg Department of Steklov Mathematical Institute Russian Academy of Sciences (PDMI RAS) 27, Fontanka St. 191023 St. Petersburg, Russia <a href="http://www.chebyshev.spb.ru/pavelzatitskiy">http://www.chebyshev.spb.ru/pavelzatitskiy</a>
@article{10_4064_sm8326_2_2016,
author = {Dmitriy M. Stolyarov and Vasily I. Vasyunin and Pavel B. Zatitskiy},
title = {Monotonic rearrangements of functions with small mean oscillation},
journal = {Studia Mathematica},
pages = {257--267},
year = {2015},
volume = {231},
number = {3},
doi = {10.4064/sm8326-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8326-2-2016/}
}
TY - JOUR
AU - Dmitriy M. Stolyarov
AU - Vasily I. Vasyunin
AU - Pavel B. Zatitskiy
TI - Monotonic rearrangements of functions with small mean oscillation
JO - Studia Mathematica
PY - 2015
SP - 257
EP - 267
VL - 231
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8326-2-2016/
DO - 10.4064/sm8326-2-2016
LA - en
ID - 10_4064_sm8326_2_2016
ER -
%0 Journal Article
%A Dmitriy M. Stolyarov
%A Vasily I. Vasyunin
%A Pavel B. Zatitskiy
%T Monotonic rearrangements of functions with small mean oscillation
%J Studia Mathematica
%D 2015
%P 257-267
%V 231
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8326-2-2016/
%R 10.4064/sm8326-2-2016
%G en
%F 10_4064_sm8326_2_2016
Dmitriy M. Stolyarov; Vasily I. Vasyunin; Pavel B. Zatitskiy. Monotonic rearrangements of functions with small mean oscillation. Studia Mathematica, Tome 231 (2015) no. 3, pp. 257-267. doi: 10.4064/sm8326-2-2016