Monotonic rearrangements of functions with small mean oscillation
Studia Mathematica, Tome 231 (2015) no. 3, pp. 257-267
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We obtain sharp bounds for the monotonic rearrangement operator from “dyadic-type” classes to “continuous” ones; in particular, for the BMO space and Muckenhoupt classes. The idea is to connect the problem with a simple geometric construction named $\alpha $-extension.
Keywords:
obtain sharp bounds monotonic rearrangement operator dyadic type classes continuous particular bmo space muckenhoupt classes idea connect problem simple geometric construction named alpha extension
Affiliations des auteurs :
Dmitriy M. Stolyarov 1 ; Vasily I. Vasyunin 2 ; Pavel B. Zatitskiy 3
@article{10_4064_sm8326_2_2016,
author = {Dmitriy M. Stolyarov and Vasily I. Vasyunin and Pavel B. Zatitskiy},
title = {Monotonic rearrangements of functions with small mean oscillation},
journal = {Studia Mathematica},
pages = {257--267},
publisher = {mathdoc},
volume = {231},
number = {3},
year = {2015},
doi = {10.4064/sm8326-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8326-2-2016/}
}
TY - JOUR AU - Dmitriy M. Stolyarov AU - Vasily I. Vasyunin AU - Pavel B. Zatitskiy TI - Monotonic rearrangements of functions with small mean oscillation JO - Studia Mathematica PY - 2015 SP - 257 EP - 267 VL - 231 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8326-2-2016/ DO - 10.4064/sm8326-2-2016 LA - en ID - 10_4064_sm8326_2_2016 ER -
%0 Journal Article %A Dmitriy M. Stolyarov %A Vasily I. Vasyunin %A Pavel B. Zatitskiy %T Monotonic rearrangements of functions with small mean oscillation %J Studia Mathematica %D 2015 %P 257-267 %V 231 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8326-2-2016/ %R 10.4064/sm8326-2-2016 %G en %F 10_4064_sm8326_2_2016
Dmitriy M. Stolyarov; Vasily I. Vasyunin; Pavel B. Zatitskiy. Monotonic rearrangements of functions with small mean oscillation. Studia Mathematica, Tome 231 (2015) no. 3, pp. 257-267. doi: 10.4064/sm8326-2-2016
Cité par Sources :