1Department of Mathematics University of Agder Postbox 422 4604 Kristiansand, Norway 2Mathematical Institute Czech Academy of Sciences Žitná 25 115 67 Praha 1, Czech Republic and Department of Mathematics Faculty of Electrical Engineering Czech Technical University in Prague Zikova 4 160 00 Praha, Czech Republic 3Department of Mathematics University of Agder Postbox 422, 4604 Kristiansand, Norway 4Department of Physics and Mathematics University of Eastern Finland Box 111 FI-80101 Joensuu, Finland 5Departamento de Matemáticas Universidad de Murcia Campus de Espinardo 30100 Espinardo (Murcia), Spain and Institute of Mathematics and Informatics Bulgarian Academy of Sciences bl. 8, acad. G. Bonchev St. 1113 Sofia, Bulgaria
Studia Mathematica, Tome 232 (2016) no. 3, pp. 227-242
We present an equivalent midpoint locally uniformly rotund (MLUR) renorming of $C[0,1]$ with the diameter 2 property (D2P), i.e. every non-empty relatively weakly open subset of the unit ball has diameter 2. An example of an MLUR space with the D2P and with convex combinations of slices of arbitrarily small diameter is also given.
Keywords:
present equivalent midpoint locally uniformly rotund mlur renorming diameter property every non empty relatively weakly subset unit ball has diameter example mlur space with convex combinations slices arbitrarily small diameter given
Affiliations des auteurs :
Trond Arnold Abrahamsen 
1
;
Petr Hájek 
2
;
Olav Nygaard 
3
;
Jarno Talponen 
4
;
Stanimir Troyanski 
5
1
Department of Mathematics University of Agder Postbox 422 4604 Kristiansand, Norway
2
Mathematical Institute Czech Academy of Sciences Žitná 25 115 67 Praha 1, Czech Republic and Department of Mathematics Faculty of Electrical Engineering Czech Technical University in Prague Zikova 4 160 00 Praha, Czech Republic
3
Department of Mathematics University of Agder Postbox 422, 4604 Kristiansand, Norway
4
Department of Physics and Mathematics University of Eastern Finland Box 111 FI-80101 Joensuu, Finland
5
Departamento de Matemáticas Universidad de Murcia Campus de Espinardo 30100 Espinardo (Murcia), Spain and Institute of Mathematics and Informatics Bulgarian Academy of Sciences bl. 8, acad. G. Bonchev St. 1113 Sofia, Bulgaria
@article{10_4064_sm8317_4_2016,
author = {Trond Arnold Abrahamsen and Petr H\'ajek and Olav Nygaard and Jarno Talponen and Stanimir Troyanski},
title = {Diameter 2 properties and convexity},
journal = {Studia Mathematica},
pages = {227--242},
year = {2016},
volume = {232},
number = {3},
doi = {10.4064/sm8317-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8317-4-2016/}
}
TY - JOUR
AU - Trond Arnold Abrahamsen
AU - Petr Hájek
AU - Olav Nygaard
AU - Jarno Talponen
AU - Stanimir Troyanski
TI - Diameter 2 properties and convexity
JO - Studia Mathematica
PY - 2016
SP - 227
EP - 242
VL - 232
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8317-4-2016/
DO - 10.4064/sm8317-4-2016
LA - en
ID - 10_4064_sm8317_4_2016
ER -
%0 Journal Article
%A Trond Arnold Abrahamsen
%A Petr Hájek
%A Olav Nygaard
%A Jarno Talponen
%A Stanimir Troyanski
%T Diameter 2 properties and convexity
%J Studia Mathematica
%D 2016
%P 227-242
%V 232
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8317-4-2016/
%R 10.4064/sm8317-4-2016
%G en
%F 10_4064_sm8317_4_2016
Trond Arnold Abrahamsen; Petr Hájek; Olav Nygaard; Jarno Talponen; Stanimir Troyanski. Diameter 2 properties and convexity. Studia Mathematica, Tome 232 (2016) no. 3, pp. 227-242. doi: 10.4064/sm8317-4-2016