On the Bishop–Phelps–Bollobás theorem for operators and numerical radius
Studia Mathematica, Tome 233 (2016) no. 2, pp. 141-151

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the Bishop–Phelps–Bollobás property for numerical radius (for short, BPBp-$\textrm {nu}$) of operators on $\ell _1$-sums and $\ell _\infty $-sums of Banach spaces. More precisely, we introduce a property of Banach spaces, which we call strongly lush. We find that if $X$ is strongly lush and $X\oplus _1 Y$ has the weak BPBp-$\textrm {nu}$, then $(X, Y)$ has the Bishop–Phelps–Bollobás property (BPBp). On the other hand, if $Y$ is strongly lush and $X\oplus _\infty Y$ has the weak BPBp-$\textrm {nu}$, then $(X,Y)$ has the BPBp. Examples of strongly lush spaces are $C(K)$ spaces, $L_1(\mu )$ spaces, and finite-codimensional subspaces of $C[0,1]$.
DOI : 10.4064/sm8311-4-2016
Keywords: study bishop phelps bollob property numerical radius short bpbp textrm operators ell sums ell infty sums banach spaces precisely introduce property banach spaces which call strongly lush strongly lush oplus has weak bpbp textrm has bishop phelps bollob property bpbp other strongly lush oplus infty has weak bpbp textrm has bpbp examples strongly lush spaces spaces spaces finite codimensional subspaces

Sun Kwang Kim 1 ; Han Ju Lee 2 ; Miguel Martín 3

1 Department of Mathematics Kyonggi University Suwon 443-760, Republic of Korea
2 Department of Mathematics Education Dongguk University – Seoul 04620 Seoul, Republic of Korea
3 Departamento de Análisis Matemático Facultad de Ciencias Universidad de Granada E-18071 Granada, Spain
@article{10_4064_sm8311_4_2016,
     author = {Sun Kwang Kim and Han Ju Lee and Miguel Mart{\'\i}n},
     title = {On the {Bishop{\textendash}Phelps{\textendash}Bollob\'as} theorem for operators and numerical radius},
     journal = {Studia Mathematica},
     pages = {141--151},
     publisher = {mathdoc},
     volume = {233},
     number = {2},
     year = {2016},
     doi = {10.4064/sm8311-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8311-4-2016/}
}
TY  - JOUR
AU  - Sun Kwang Kim
AU  - Han Ju Lee
AU  - Miguel Martín
TI  - On the Bishop–Phelps–Bollobás theorem for operators and numerical radius
JO  - Studia Mathematica
PY  - 2016
SP  - 141
EP  - 151
VL  - 233
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8311-4-2016/
DO  - 10.4064/sm8311-4-2016
LA  - en
ID  - 10_4064_sm8311_4_2016
ER  - 
%0 Journal Article
%A Sun Kwang Kim
%A Han Ju Lee
%A Miguel Martín
%T On the Bishop–Phelps–Bollobás theorem for operators and numerical radius
%J Studia Mathematica
%D 2016
%P 141-151
%V 233
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8311-4-2016/
%R 10.4064/sm8311-4-2016
%G en
%F 10_4064_sm8311_4_2016
Sun Kwang Kim; Han Ju Lee; Miguel Martín. On the Bishop–Phelps–Bollobás theorem for operators and numerical radius. Studia Mathematica, Tome 233 (2016) no. 2, pp. 141-151. doi: 10.4064/sm8311-4-2016

Cité par Sources :