On the Bishop–Phelps–Bollobás theorem for operators and numerical radius
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 233 (2016) no. 2, pp. 141-151
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study the Bishop–Phelps–Bollobás property for numerical radius (for short, BPBp-$\textrm {nu}$) of operators on $\ell _1$-sums and $\ell _\infty $-sums of Banach spaces. More precisely, we introduce a property of Banach spaces, which we call strongly lush. We find that if $X$ is strongly lush and $X\oplus _1 Y$ has the weak BPBp-$\textrm {nu}$, then $(X, Y)$ has the Bishop–Phelps–Bollobás property (BPBp). On the other hand, if $Y$ is strongly lush and $X\oplus _\infty Y$ has the weak BPBp-$\textrm {nu}$, then $(X,Y)$ has the BPBp. Examples of strongly lush spaces are $C(K)$ spaces, $L_1(\mu )$ spaces, and finite-codimensional subspaces of $C[0,1]$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
study bishop phelps bollob property numerical radius short bpbp textrm operators ell sums ell infty sums banach spaces precisely introduce property banach spaces which call strongly lush strongly lush oplus has weak bpbp textrm has bishop phelps bollob property bpbp other strongly lush oplus infty has weak bpbp textrm has bpbp examples strongly lush spaces spaces spaces finite codimensional subspaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Sun Kwang Kim 1 ; Han Ju Lee 2 ; Miguel Martín 3
@article{10_4064_sm8311_4_2016,
     author = {Sun Kwang Kim and Han Ju Lee and Miguel Mart{\'\i}n},
     title = {On the {Bishop{\textendash}Phelps{\textendash}Bollob\'as} theorem for operators and numerical radius},
     journal = {Studia Mathematica},
     pages = {141--151},
     publisher = {mathdoc},
     volume = {233},
     number = {2},
     year = {2016},
     doi = {10.4064/sm8311-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8311-4-2016/}
}
                      
                      
                    TY - JOUR AU - Sun Kwang Kim AU - Han Ju Lee AU - Miguel Martín TI - On the Bishop–Phelps–Bollobás theorem for operators and numerical radius JO - Studia Mathematica PY - 2016 SP - 141 EP - 151 VL - 233 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8311-4-2016/ DO - 10.4064/sm8311-4-2016 LA - en ID - 10_4064_sm8311_4_2016 ER -
%0 Journal Article %A Sun Kwang Kim %A Han Ju Lee %A Miguel Martín %T On the Bishop–Phelps–Bollobás theorem for operators and numerical radius %J Studia Mathematica %D 2016 %P 141-151 %V 233 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8311-4-2016/ %R 10.4064/sm8311-4-2016 %G en %F 10_4064_sm8311_4_2016
Sun Kwang Kim; Han Ju Lee; Miguel Martín. On the Bishop–Phelps–Bollobás theorem for operators and numerical radius. Studia Mathematica, Tome 233 (2016) no. 2, pp. 141-151. doi: 10.4064/sm8311-4-2016
Cité par Sources :
