Biduals of tensor products in operator spaces
Studia Mathematica, Tome 230 (2015) no. 2, pp. 165-185
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study whether the operator space ${{V^{**}\overset\alpha\otimes W^{**}}}$ can be identified with a subspace of the bidual space ${(V\overset\alpha\otimes W)^{**}}$, for a given operator space tensor norm. We prove that this can be done if $\alpha$ is finitely generated and $V$ and $W$ are locally reflexive. If in addition the dual spaces are locally reflexive and the bidual spaces have the completely bounded approximation property, then the identification is through a complete isomorphism. When $\alpha$ is the projective, Haagerup or injective norm, the hypotheses can be weakened.
Keywords:
study whether operator space ** overset alpha otimes ** identified subspace bidual space overset alpha otimes ** given operator space tensor norm prove done alpha finitely generated and locally reflexive addition dual spaces locally reflexive bidual spaces have completely bounded approximation property identification through complete isomorphism alpha projective haagerup injective norm hypotheses weakened
Affiliations des auteurs :
Verónica Dimant 1 ; Maite Fernández-Unzueta 2
@article{10_4064_sm8292_1_2016,
author = {Ver\'onica Dimant and Maite Fern\'andez-Unzueta},
title = {Biduals of tensor products in operator spaces},
journal = {Studia Mathematica},
pages = {165--185},
publisher = {mathdoc},
volume = {230},
number = {2},
year = {2015},
doi = {10.4064/sm8292-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8292-1-2016/}
}
TY - JOUR AU - Verónica Dimant AU - Maite Fernández-Unzueta TI - Biduals of tensor products in operator spaces JO - Studia Mathematica PY - 2015 SP - 165 EP - 185 VL - 230 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8292-1-2016/ DO - 10.4064/sm8292-1-2016 LA - en ID - 10_4064_sm8292_1_2016 ER -
Verónica Dimant; Maite Fernández-Unzueta. Biduals of tensor products in operator spaces. Studia Mathematica, Tome 230 (2015) no. 2, pp. 165-185. doi: 10.4064/sm8292-1-2016
Cité par Sources :