The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 233 (2016) no. 2, pp. 119-139
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              
Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space $X$ is an Ascoli space if every compact subset $\mathcal {K}$ of $C_k(X)$ is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every $k_{\mathbb {R}}$-space, hence any $k$-space, is Ascoli.
Let $X$ be a metrizable space. We prove that the space $C_{k}(X)$ is Ascoli iff $C_{k}(X)$ is a $k_{\mathbb {R}}$-space iff $X$ is locally compact. Moreover, $C_{k}(X)$ endowed with the weak topology is Ascoli iff $X$ is countable and discrete. Using some basic concepts from probability theory and measure-theoretic properties of $\ell _1$, we show that the following assertions are equivalent for a Banach space $E$: (i) $E$ does not contain an isomorphic copy of $\ell _1$, (ii) every real-valued sequentially continuous map on the unit ball $B_{w}$ with the weak topology is continuous, (iii) $B_{w}$ is a $k_{\mathbb {R}}$-space, (iv) $B_{w}$ is an Ascoli space. We also prove that a Fréchet lcs $F$ does not contain an isomorphic copy of $\ell _1$ iff each closed and convex bounded subset of $F$ is Ascoli in the weak topology. Moreover we show that a Banach space $E$ in the weak topology is Ascoli iff $E$ is finite-dimensional. We supplement the last result by showing that a Fréchet lcs $F$ which is a quojection is Ascoli in the weak topology iff $F$ is either finite-dimensional or isomorphic to $\mathbb {K}^{\mathbb {N}}$, where $\mathbb {K}\in \{\mathbb {R},\mathbb {C}\}$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
following banakh gabriyelyan say tychonoff space ascoli space every compact subset mathcal evenly continuous notion closely related classical ascoli theorem every mathbb space hence k space ascoli metrizable space prove space ascoli mathbb space locally compact moreover endowed weak topology ascoli countable discrete using basic concepts probability theory measure theoretic properties ell following assertions equivalent banach space nbsp nbsp does contain isomorphic copy ell every real valued sequentially continuous map unit ball weak topology continuous iii mathbb space nbsp nbsp ascoli space prove chet lcs does contain isomorphic copy ell each closed convex bounded subset ascoli weak topology moreover banach space weak topology ascoli finite dimensional supplement result showing chet lcs which quojection ascoli weak topology either finite dimensional isomorphic mathbb mathbb where mathbb mathbb mathbb
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              S. Gabriyelyan 1 ; J. Kąkol 2 ; G. Plebanek 3
@article{10_4064_sm8289_4_2016,
     author = {S. Gabriyelyan and J. K\k{a}kol and G. Plebanek},
     title = {The {Ascoli} property for function spaces and the weak topology of {Banach} and {Fr\'echet} spaces},
     journal = {Studia Mathematica},
     pages = {119--139},
     publisher = {mathdoc},
     volume = {233},
     number = {2},
     year = {2016},
     doi = {10.4064/sm8289-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8289-4-2016/}
}
                      
                      
                    TY - JOUR AU - S. Gabriyelyan AU - J. Kąkol AU - G. Plebanek TI - The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces JO - Studia Mathematica PY - 2016 SP - 119 EP - 139 VL - 233 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8289-4-2016/ DO - 10.4064/sm8289-4-2016 LA - en ID - 10_4064_sm8289_4_2016 ER -
%0 Journal Article %A S. Gabriyelyan %A J. Kąkol %A G. Plebanek %T The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces %J Studia Mathematica %D 2016 %P 119-139 %V 233 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8289-4-2016/ %R 10.4064/sm8289-4-2016 %G en %F 10_4064_sm8289_4_2016
S. Gabriyelyan; J. Kąkol; G. Plebanek. The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces. Studia Mathematica, Tome 233 (2016) no. 2, pp. 119-139. doi: 10.4064/sm8289-4-2016
Cité par Sources :
