Baire classes of affine vector-valued functions
Studia Mathematica, Tome 233 (2016) no. 3, pp. 227-277
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate Baire classes of strongly affine mappings with values in Fréchet spaces. We show, in particular, that the validity of the vector-valued Mokobodzki result on affine functions of the first Baire class is related to the approximation property of the range space. We further extend several results known for scalar functions on Choquet simplices or on dual balls of $L_1$-preduals to the vector-valued case. This concerns, in particular, affine classes of strongly affine Baire mappings, the abstract Dirichlet problem and the weak Dirichlet problem for Baire mappings. Some of these results have weaker conclusions than their scalar versions. We also establish an affine version of the Jayne–Rogers selection theorem.
Keywords:
investigate baire classes strongly affine mappings values chet spaces particular validity vector valued mokobodzki result affine functions first baire class related approximation property range space further extend several results known scalar functions choquet simplices dual balls preduals vector valued concerns particular affine classes strongly affine baire mappings abstract dirichlet problem weak dirichlet problem baire mappings these results have weaker conclusions their scalar versions establish affine version jayne rogers selection theorem
Affiliations des auteurs :
Ondřej F. K. Kalenda 1 ; Jiří Spurný 1
@article{10_4064_sm8278_5_2016,
author = {Ond\v{r}ej F. K. Kalenda and Ji\v{r}{\'\i} Spurn\'y},
title = {Baire classes of affine vector-valued functions},
journal = {Studia Mathematica},
pages = {227--277},
publisher = {mathdoc},
volume = {233},
number = {3},
year = {2016},
doi = {10.4064/sm8278-5-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8278-5-2016/}
}
TY - JOUR AU - Ondřej F. K. Kalenda AU - Jiří Spurný TI - Baire classes of affine vector-valued functions JO - Studia Mathematica PY - 2016 SP - 227 EP - 277 VL - 233 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8278-5-2016/ DO - 10.4064/sm8278-5-2016 LA - en ID - 10_4064_sm8278_5_2016 ER -
Ondřej F. K. Kalenda; Jiří Spurný. Baire classes of affine vector-valued functions. Studia Mathematica, Tome 233 (2016) no. 3, pp. 227-277. doi: 10.4064/sm8278-5-2016
Cité par Sources :