Equilateral sets in Banach spaces of the form $C(K)$
Studia Mathematica, Tome 231 (2015) no. 3, pp. 241-255

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that for “most” compact nonmetrizable spaces, the unit ball of the Banach space $C(K)$ contains an uncountable 2-equilateral set. We also give examples of compact nonmetrizable spaces $K$ such that the minimum cardinality of a maximal equilateral set in $C(K)$ is countable.
DOI : 10.4064/sm8259-1-2016
Keywords: compact nonmetrizable spaces unit ball banach space contains uncountable equilateral set examples compact nonmetrizable spaces minimum cardinality maximal equilateral set countable

Sophocles K. Mercourakis 1 ; Georgios Vassiliadis 1

1 Department of Mathematics Athens University 15784 Athens, Greece
@article{10_4064_sm8259_1_2016,
     author = {Sophocles K. Mercourakis and Georgios Vassiliadis},
     title = {Equilateral sets in {Banach} spaces of the form $C(K)$},
     journal = {Studia Mathematica},
     pages = {241--255},
     publisher = {mathdoc},
     volume = {231},
     number = {3},
     year = {2015},
     doi = {10.4064/sm8259-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8259-1-2016/}
}
TY  - JOUR
AU  - Sophocles K. Mercourakis
AU  - Georgios Vassiliadis
TI  - Equilateral sets in Banach spaces of the form $C(K)$
JO  - Studia Mathematica
PY  - 2015
SP  - 241
EP  - 255
VL  - 231
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8259-1-2016/
DO  - 10.4064/sm8259-1-2016
LA  - en
ID  - 10_4064_sm8259_1_2016
ER  - 
%0 Journal Article
%A Sophocles K. Mercourakis
%A Georgios Vassiliadis
%T Equilateral sets in Banach spaces of the form $C(K)$
%J Studia Mathematica
%D 2015
%P 241-255
%V 231
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8259-1-2016/
%R 10.4064/sm8259-1-2016
%G en
%F 10_4064_sm8259_1_2016
Sophocles K. Mercourakis; Georgios Vassiliadis. Equilateral sets in Banach spaces of the form $C(K)$. Studia Mathematica, Tome 231 (2015) no. 3, pp. 241-255. doi: 10.4064/sm8259-1-2016

Cité par Sources :