Amenability properties of Figà-Talamanca–Herz algebras on inverse semigroups
Studia Mathematica, Tome 233 (2016) no. 1, pp. 1-12
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
This paper continues the joint work with A. R. Medghalchi (2012) and the author’s recent work
(2015). For an inverse semigroup $S$, it is shown that ${\rm A}_p(S)$
has a bounded approximate identity if and only if $l^1(S)$ is amenable
(a generalization of Leptin’s theorem) and that ${\rm A}(S)$, the Fourier
algebra of $S$, is operator amenable if and only if $l^1(S)$ is
amenable (a generalization of Ruan’s theorem).
Keywords:
paper continues joint work medghalchi author recent work inverse semigroup nbsp shown has bounded approximate identity only amenable generalization leptin theorem fourier algebra operator amenable only amenable generalization ruan theorem
Affiliations des auteurs :
Hasan Pourmahmood-Aghababa 1
@article{10_4064_sm8250_4_2016,
author = {Hasan Pourmahmood-Aghababa},
title = {Amenability properties of {Fig\`a-Talamanca{\textendash}Herz} algebras on inverse semigroups},
journal = {Studia Mathematica},
pages = {1--12},
year = {2016},
volume = {233},
number = {1},
doi = {10.4064/sm8250-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8250-4-2016/}
}
TY - JOUR AU - Hasan Pourmahmood-Aghababa TI - Amenability properties of Figà-Talamanca–Herz algebras on inverse semigroups JO - Studia Mathematica PY - 2016 SP - 1 EP - 12 VL - 233 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8250-4-2016/ DO - 10.4064/sm8250-4-2016 LA - en ID - 10_4064_sm8250_4_2016 ER -
Hasan Pourmahmood-Aghababa. Amenability properties of Figà-Talamanca–Herz algebras on inverse semigroups. Studia Mathematica, Tome 233 (2016) no. 1, pp. 1-12. doi: 10.4064/sm8250-4-2016
Cité par Sources :