Correction to the paper ‘Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation’ (Studia Math. 210 (2012), 93–98)
Studia Mathematica, Tome 232 (2016) no. 1, pp. 93-94

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm8249-4-2016

Juan Carlos Ferrando 1

1 Centro de Investigación Operativa Edificio Torretamarit, Avda de la Universidad Universidad Miguel Hernández E-03202 Elche (Alicante), Spain
@article{10_4064_sm8249_4_2016,
     author = {Juan Carlos Ferrando},
     title = {Correction to the paper {{\textquoteleft}Copies} of $\ell _{\infty }$ in the space of {Pettis} integrable functions with integrals of finite variation{\textquoteright} {(Studia} {Math.} 210 (2012), 93{\textendash}98)},
     journal = {Studia Mathematica},
     pages = {93--94},
     publisher = {mathdoc},
     volume = {232},
     number = {1},
     year = {2016},
     doi = {10.4064/sm8249-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8249-4-2016/}
}
TY  - JOUR
AU  - Juan Carlos Ferrando
TI  - Correction to the paper ‘Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation’ (Studia Math. 210 (2012), 93–98)
JO  - Studia Mathematica
PY  - 2016
SP  - 93
EP  - 94
VL  - 232
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8249-4-2016/
DO  - 10.4064/sm8249-4-2016
LA  - en
ID  - 10_4064_sm8249_4_2016
ER  - 
%0 Journal Article
%A Juan Carlos Ferrando
%T Correction to the paper ‘Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation’ (Studia Math. 210 (2012), 93–98)
%J Studia Mathematica
%D 2016
%P 93-94
%V 232
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8249-4-2016/
%R 10.4064/sm8249-4-2016
%G en
%F 10_4064_sm8249_4_2016
Juan Carlos Ferrando. Correction to the paper ‘Copies of $\ell _{\infty }$ in the space of Pettis integrable functions with integrals of finite variation’ (Studia Math. 210 (2012), 93–98). Studia Mathematica, Tome 232 (2016) no. 1, pp. 93-94. doi: 10.4064/sm8249-4-2016

Cité par Sources :