Jordan product and local spectrum preservers
Studia Mathematica, Tome 234 (2016) no. 2, pp. 97-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $X$ and $Y$ be two infinite-dimensional complex Banach spaces, and fix two nonzero vectors $x_0\in X$ and $y_0\in Y$. Let ${\mathscr B}(X)$ (resp. ${\mathscr B}(Y)$) denote the algebra of all bounded linear operators on $X$ (resp. on $Y$). We show that a map $\varphi $ from ${\mathscr B}(X)$ onto ${\mathscr B}(Y)$ satisfies \[ \sigma _{\varphi (T)\varphi (S)+\varphi (S)\varphi (T)}(y_0) =\sigma _{TS+ST}(x_0)\ \hskip 1em (T,S\in {\mathscr B}(X)) \] if and only if there exists a bijective bounded linear mapping $A$ from $X$ into $Y$ such that $Ax_0=y_0$ and either $\varphi (T)= ATA^{-1}$ for all $T\in {\mathscr B}(X)$ or $\varphi (T)=- ATA^{-1}$ for all $T\in {\mathscr B}(X)$.
Keywords:
infinite dimensional complex banach spaces fix nonzero vectors mathscr resp mathscr denote algebra bounded linear operators resp map varphi mathscr mathscr satisfies sigma varphi varphi varphi varphi sigma hskip mathscr only there exists bijective bounded linear mapping either varphi ata mathscr varphi ata mathscr
Affiliations des auteurs :
Abdellatif Bourhim 1 ; Mohamed Mabrouk 2
@article{10_4064_sm8240_6_2016,
author = {Abdellatif Bourhim and Mohamed Mabrouk},
title = {Jordan product and local spectrum preservers},
journal = {Studia Mathematica},
pages = {97--120},
publisher = {mathdoc},
volume = {234},
number = {2},
year = {2016},
doi = {10.4064/sm8240-6-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8240-6-2016/}
}
TY - JOUR AU - Abdellatif Bourhim AU - Mohamed Mabrouk TI - Jordan product and local spectrum preservers JO - Studia Mathematica PY - 2016 SP - 97 EP - 120 VL - 234 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8240-6-2016/ DO - 10.4064/sm8240-6-2016 LA - en ID - 10_4064_sm8240_6_2016 ER -
Abdellatif Bourhim; Mohamed Mabrouk. Jordan product and local spectrum preservers. Studia Mathematica, Tome 234 (2016) no. 2, pp. 97-120. doi: 10.4064/sm8240-6-2016
Cité par Sources :