Jordan product and local spectrum preservers
Studia Mathematica, Tome 234 (2016) no. 2, pp. 97-120

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ and $Y$ be two infinite-dimensional complex Banach spaces, and fix two nonzero vectors $x_0\in X$ and $y_0\in Y$. Let ${\mathscr B}(X)$ (resp. ${\mathscr B}(Y)$) denote the algebra of all bounded linear operators on $X$ (resp. on $Y$). We show that a map $\varphi $ from ${\mathscr B}(X)$ onto ${\mathscr B}(Y)$ satisfies \[ \sigma _{\varphi (T)\varphi (S)+\varphi (S)\varphi (T)}(y_0) =\sigma _{TS+ST}(x_0)\ \hskip 1em (T,S\in {\mathscr B}(X)) \] if and only if there exists a bijective bounded linear mapping $A$ from $X$ into $Y$ such that $Ax_0=y_0$ and either $\varphi (T)= ATA^{-1}$ for all $T\in {\mathscr B}(X)$ or $\varphi (T)=- ATA^{-1}$ for all $T\in {\mathscr B}(X)$.
DOI : 10.4064/sm8240-6-2016
Keywords: infinite dimensional complex banach spaces fix nonzero vectors mathscr resp mathscr denote algebra bounded linear operators resp map varphi mathscr mathscr satisfies sigma varphi varphi varphi varphi sigma hskip mathscr only there exists bijective bounded linear mapping either varphi ata mathscr varphi ata mathscr

Abdellatif Bourhim 1 ; Mohamed Mabrouk 2

1 Department of Mathematics Syracuse University 215 Carnegie Building Syracuse, NY 13244, U.S.A.
2 Department of Mathematics College of Applied Sciences P.O. Box 715 Makkah 21955, KSA and Department of Mathematics Faculty of Sciences of Gabès University of Gabès Cité Erriadh 6072 Zrig, Gabès, Tunisia
@article{10_4064_sm8240_6_2016,
     author = {Abdellatif Bourhim and Mohamed Mabrouk},
     title = {Jordan product and local spectrum preservers},
     journal = {Studia Mathematica},
     pages = {97--120},
     publisher = {mathdoc},
     volume = {234},
     number = {2},
     year = {2016},
     doi = {10.4064/sm8240-6-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8240-6-2016/}
}
TY  - JOUR
AU  - Abdellatif Bourhim
AU  - Mohamed Mabrouk
TI  - Jordan product and local spectrum preservers
JO  - Studia Mathematica
PY  - 2016
SP  - 97
EP  - 120
VL  - 234
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8240-6-2016/
DO  - 10.4064/sm8240-6-2016
LA  - en
ID  - 10_4064_sm8240_6_2016
ER  - 
%0 Journal Article
%A Abdellatif Bourhim
%A Mohamed Mabrouk
%T Jordan product and local spectrum preservers
%J Studia Mathematica
%D 2016
%P 97-120
%V 234
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8240-6-2016/
%R 10.4064/sm8240-6-2016
%G en
%F 10_4064_sm8240_6_2016
Abdellatif Bourhim; Mohamed Mabrouk. Jordan product and local spectrum preservers. Studia Mathematica, Tome 234 (2016) no. 2, pp. 97-120. doi: 10.4064/sm8240-6-2016

Cité par Sources :