1College of Mathematics and Information Science Henan Normal University 453007 Xinxiang, P.R. China and Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control 2Department of Mathematics Tongji University 200092 Shanghai, P.R. China
Studia Mathematica, Tome 232 (2016) no. 3, pp. 189-199
We establish an integral geometric inequality on a closed Riemannian manifold with $\infty $-Bakry–Émery Ricci curvature bounded from below. We also obtain similar inequalities for Riemannian manifolds with totally geodesic boundary. In particular, our results generalize those of Wu (2014) for the $\infty $-Bakry–Émery Ricci curvature.
1
College of Mathematics and Information Science Henan Normal University 453007 Xinxiang, P.R. China and Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control
2
Department of Mathematics Tongji University 200092 Shanghai, P.R. China
@article{10_4064_sm8236_4_2016,
author = {Guangyue Huang and Fanqi Zeng},
title = {De {Lellis{\textendash}Topping} type inequalities for $f${-Laplacians}},
journal = {Studia Mathematica},
pages = {189--199},
year = {2016},
volume = {232},
number = {3},
doi = {10.4064/sm8236-4-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8236-4-2016/}
}
TY - JOUR
AU - Guangyue Huang
AU - Fanqi Zeng
TI - De Lellis–Topping type inequalities for $f$-Laplacians
JO - Studia Mathematica
PY - 2016
SP - 189
EP - 199
VL - 232
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8236-4-2016/
DO - 10.4064/sm8236-4-2016
LA - en
ID - 10_4064_sm8236_4_2016
ER -
%0 Journal Article
%A Guangyue Huang
%A Fanqi Zeng
%T De Lellis–Topping type inequalities for $f$-Laplacians
%J Studia Mathematica
%D 2016
%P 189-199
%V 232
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8236-4-2016/
%R 10.4064/sm8236-4-2016
%G en
%F 10_4064_sm8236_4_2016
Guangyue Huang; Fanqi Zeng. De Lellis–Topping type inequalities for $f$-Laplacians. Studia Mathematica, Tome 232 (2016) no. 3, pp. 189-199. doi: 10.4064/sm8236-4-2016