Proper subspaces and compatibility
Studia Mathematica, Tome 231 (2015) no. 3, pp. 195-218 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $\mathcal {E}$ be a Banach space contained in a Hilbert space $\mathcal {L}$. Assume that the inclusion is continuous with dense range. Following the terminology of Gohberg and Zambickiĭ, we say that a bounded operator on $\mathcal {E}$ is a proper operator if it admits an adjoint with respect to the inner product of $\mathcal {L}$. A proper operator which is self-adjoint with respect to the inner product of $\mathcal {L}$ is called symmetrizable. By a proper subspace $\mathcal {S}$ we mean a closed subspace of $\mathcal {E}$ which is the range of a proper projection. Furthermore, if there exists a symmetrizable projection onto $\mathcal {S}$, then $\mathcal {S}$ belongs to a well-known class of subspaces called compatible subspaces. We find equivalent conditions to describe proper subspaces. Then we prove a necessary and sufficient condition for a proper subspace to be compatible. The existence of non-compatible proper subspaces is related to spectral properties of symmetrizable operators. Each proper subspace $\mathcal {S}$ has a supplement $\mathcal {T}$ which is also a proper subspace. We give a characterization of the compatibility of both subspaces $\mathcal {S}$ and $\mathcal {T}$. Several examples are provided that illustrate different situations between proper and compatible subspaces.
DOI : 10.4064/sm8225-2-2016
Keywords: mathcal banach space contained hilbert space mathcal assume inclusion continuous dense range following terminology gohberg zambicki say bounded operator mathcal proper operator admits adjoint respect inner product mathcal proper operator which self adjoint respect inner product mathcal called symmetrizable proper subspace mathcal mean closed subspace mathcal which range proper projection furthermore there exists symmetrizable projection mathcal mathcal belongs well known class subspaces called compatible subspaces equivalent conditions describe proper subspaces prove necessary sufficient condition proper subspace compatible existence non compatible proper subspaces related spectral properties symmetrizable operators each proper subspace mathcal has supplement mathcal which proper subspace characterization compatibility subspaces mathcal mathcal several examples provided illustrate different situations between proper compatible subspaces

Esteban Andruchow  1   ; Eduardo Chiumiento  2   ; María Eugenia Di Iorio y Lucero  1

1 Instituto de Ciencias Universidad Nacional de Gral. Sarmiento J.M. Gutierrez 1150 1613 Los Polvorines, Argentina and Instituto Argentino de Matemática ‘Alberto P. Calderón’ CONICET Saavedra 15, 3er. piso 1083 Buenos Aires, Argentina
2 Departamento de Matemática, FCE-UNLP Calles 50 y 115 1900 La Plata, Argentina and Instituto Argentino de Matemática ‘Alberto P. Calderón’ CONICET Saavedra 15, 3er. piso 1083 Buenos Aires, Argentina
@article{10_4064_sm8225_2_2016,
     author = {Esteban Andruchow and Eduardo Chiumiento and Mar{\'\i}a Eugenia Di Iorio y Lucero},
     title = {Proper subspaces and compatibility},
     journal = {Studia Mathematica},
     pages = {195--218},
     year = {2015},
     volume = {231},
     number = {3},
     doi = {10.4064/sm8225-2-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8225-2-2016/}
}
TY  - JOUR
AU  - Esteban Andruchow
AU  - Eduardo Chiumiento
AU  - María Eugenia Di Iorio y Lucero
TI  - Proper subspaces and compatibility
JO  - Studia Mathematica
PY  - 2015
SP  - 195
EP  - 218
VL  - 231
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8225-2-2016/
DO  - 10.4064/sm8225-2-2016
LA  - en
ID  - 10_4064_sm8225_2_2016
ER  - 
%0 Journal Article
%A Esteban Andruchow
%A Eduardo Chiumiento
%A María Eugenia Di Iorio y Lucero
%T Proper subspaces and compatibility
%J Studia Mathematica
%D 2015
%P 195-218
%V 231
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8225-2-2016/
%R 10.4064/sm8225-2-2016
%G en
%F 10_4064_sm8225_2_2016
Esteban Andruchow; Eduardo Chiumiento; María Eugenia Di Iorio y Lucero. Proper subspaces and compatibility. Studia Mathematica, Tome 231 (2015) no. 3, pp. 195-218. doi: 10.4064/sm8225-2-2016

Cité par Sources :