Less than one implies zero
Studia Mathematica, Tome 229 (2015) no. 2, pp. 181-188 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

In this paper we show that from an estimate of the form $\sup_{t \geq 0}\| C(t) - \cos(at)I\| 1$, we can conclude that $C(t)$ equals $\cos(at) I$. Here $(C(t))_{t \geq 0}$ is a strongly continuous cosine family on a Banach space.
DOI : 10.4064/sm8218-12-2015
Keywords: paper estimate form sup geq cos conclude equals cos here geq strongly continuous cosine family banach space

Felix L. Schwenninger  1   ; Hans Zwart  2

1 Department of Applied Mathematics University of Twente P.O. Box 217 7500 AE Enschede, The Netherlands and School of Mathematics and Natural Sciences Arbeitsgruppe Funktionalanalysis University of Wuppertal D-42119 Wuppertal, Germany
2 Department of Applied Mathematics University of Twente P.O. Box 217 7500 AE Enschede, The Netherlands
@article{10_4064_sm8218_12_2015,
     author = {Felix L. Schwenninger and Hans Zwart},
     title = {Less than one implies zero},
     journal = {Studia Mathematica},
     pages = {181--188},
     year = {2015},
     volume = {229},
     number = {2},
     doi = {10.4064/sm8218-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8218-12-2015/}
}
TY  - JOUR
AU  - Felix L. Schwenninger
AU  - Hans Zwart
TI  - Less than one implies zero
JO  - Studia Mathematica
PY  - 2015
SP  - 181
EP  - 188
VL  - 229
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8218-12-2015/
DO  - 10.4064/sm8218-12-2015
LA  - en
ID  - 10_4064_sm8218_12_2015
ER  - 
%0 Journal Article
%A Felix L. Schwenninger
%A Hans Zwart
%T Less than one implies zero
%J Studia Mathematica
%D 2015
%P 181-188
%V 229
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8218-12-2015/
%R 10.4064/sm8218-12-2015
%G en
%F 10_4064_sm8218_12_2015
Felix L. Schwenninger; Hans Zwart. Less than one implies zero. Studia Mathematica, Tome 229 (2015) no. 2, pp. 181-188. doi: 10.4064/sm8218-12-2015

Cité par Sources :