An improved maximal inequality for 2D fractional order Schrödinger operators
Studia Mathematica, Tome 230 (2015) no. 2, pp. 121-165 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The local maximal operator for the Schrödinger operators of order $\alpha \gt 1$ is shown to be bounded from $H^s(\mathbb {R}^2)$ to $L^2$ for any $s \gt 3/8$. This improves the previous result of Sjölin on the regularity of solutions to fractional order Schrödinger equations. Our method is inspired by Bourgain’s argument in the case of $\alpha =2$. The extension from $\alpha =2$ to general $\alpha \gt 1$ faces three essential obstacles: the lack of Lee’s reduction lemma, the absence of the algebraic structure of the symbol and the inapplicable Galilean transformation in the deduction of the main theorem. We get around these difficulties by establishing a new reduction lemma and analyzing all the possibilities in using the separation of the segments to obtain the analogous bilinear $L^2$-estimates. To compensate for the absence of Galilean invariance, we resort to Taylor’s expansion for the phase function. The Bourgain–Guth inequality (2011) is also generalized to dominate the solution of fractional order Schrödinger equations.
DOI : 10.4064/sm8190-12-2015
Keywords: local maximal operator schr dinger operators order alpha shown bounded mathbb improves previous result lin regularity solutions fractional order schr dinger equations method inspired bourgain argument alpha extension alpha general alpha faces three essential obstacles lack lee reduction lemma absence algebraic structure symbol inapplicable galilean transformation deduction main theorem get around these difficulties establishing reduction lemma analyzing possibilities using separation segments obtain analogous bilinear estimates compensate absence galilean invariance resort taylor expansion phase function bourgain guth inequality generalized dominate solution fractional order schr dinger equations

Changxing Miao  1   ; Jianwei Yang  2   ; Jiqiang Zheng  3

1 Institute of Applied Physics and Computational Mathematics 100088 Beijing, China
2 Beijing International Center for Mathematical Research Peking University 100871 Beijing, China
3 Université Nice Sophia-Antipolis 06108 Nice Cedex 02, France
@article{10_4064_sm8190_12_2015,
     author = {Changxing Miao and Jianwei Yang and Jiqiang Zheng},
     title = {An improved maximal inequality for {2D} fractional order {Schr\"odinger} operators},
     journal = {Studia Mathematica},
     pages = {121--165},
     year = {2015},
     volume = {230},
     number = {2},
     doi = {10.4064/sm8190-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8190-12-2015/}
}
TY  - JOUR
AU  - Changxing Miao
AU  - Jianwei Yang
AU  - Jiqiang Zheng
TI  - An improved maximal inequality for 2D fractional order Schrödinger operators
JO  - Studia Mathematica
PY  - 2015
SP  - 121
EP  - 165
VL  - 230
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8190-12-2015/
DO  - 10.4064/sm8190-12-2015
LA  - en
ID  - 10_4064_sm8190_12_2015
ER  - 
%0 Journal Article
%A Changxing Miao
%A Jianwei Yang
%A Jiqiang Zheng
%T An improved maximal inequality for 2D fractional order Schrödinger operators
%J Studia Mathematica
%D 2015
%P 121-165
%V 230
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8190-12-2015/
%R 10.4064/sm8190-12-2015
%G en
%F 10_4064_sm8190_12_2015
Changxing Miao; Jianwei Yang; Jiqiang Zheng. An improved maximal inequality for 2D fractional order Schrödinger operators. Studia Mathematica, Tome 230 (2015) no. 2, pp. 121-165. doi: 10.4064/sm8190-12-2015

Cité par Sources :