On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting
Studia Mathematica, Tome 237 (2017) no. 2, pp. 101-117

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $$Sf(x,y)=\int ^\pi _{-\pi }\int ^\pi _{-\pi } {{e^{iM^2(x,y) y’}}\over {y’} }\, {{e^{iM(x,y) x’}}\over {x’}}f(x-x’,y-y’)\, dx’\, dy’ ,$$ the linearized maximal operator of the rectangular partial sums of the kind $(M,M^2)$ for double Fourier series, we prove a weak-type $(L^r, L^{r-\varepsilon })$ estimate for $1 \lt r\leq 2$ and any $\varepsilon \gt 0$ in case $M^2(x,y)=Ax+By$ with $x,y \in [0,2\pi ],$ uniformly with respect to $A, B\geq 0.$
DOI : 10.4064/sm8182-10-2016
Keywords: int int x x y y linearized maximal operator rectangular partial sums kind double fourier series prove weak type r varepsilon estimate leq varepsilon uniformly respect geq

Elena Prestini 1

1 Dipartimento di Matematica Università di Roma “Tor Vergata” Via della Ricerca Scientifica 1 00133 Roma, Italy
@article{10_4064_sm8182_10_2016,
     author = {Elena Prestini},
     title = {On the convergence of parabolically scaled two-dimensional {Fourier} series in the linear phase setting},
     journal = {Studia Mathematica},
     pages = {101--117},
     publisher = {mathdoc},
     volume = {237},
     number = {2},
     year = {2017},
     doi = {10.4064/sm8182-10-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8182-10-2016/}
}
TY  - JOUR
AU  - Elena Prestini
TI  - On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting
JO  - Studia Mathematica
PY  - 2017
SP  - 101
EP  - 117
VL  - 237
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8182-10-2016/
DO  - 10.4064/sm8182-10-2016
LA  - en
ID  - 10_4064_sm8182_10_2016
ER  - 
%0 Journal Article
%A Elena Prestini
%T On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting
%J Studia Mathematica
%D 2017
%P 101-117
%V 237
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8182-10-2016/
%R 10.4064/sm8182-10-2016
%G en
%F 10_4064_sm8182_10_2016
Elena Prestini. On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting. Studia Mathematica, Tome 237 (2017) no. 2, pp. 101-117. doi: 10.4064/sm8182-10-2016

Cité par Sources :