On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting
Studia Mathematica, Tome 237 (2017) no. 2, pp. 101-117
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $$Sf(x,y)=\int ^\pi _{-\pi }\int ^\pi _{-\pi } {{e^{iM^2(x,y) y’}}\over {y’} }\, {{e^{iM(x,y) x’}}\over {x’}}f(x-x’,y-y’)\, dx’\, dy’ ,$$ the linearized maximal operator of the rectangular partial sums of the kind $(M,M^2)$ for double Fourier series, we prove a weak-type $(L^r, L^{r-\varepsilon })$ estimate for $1 \lt r\leq 2$ and any $\varepsilon \gt 0$ in case $M^2(x,y)=Ax+By$ with $x,y \in [0,2\pi ],$ uniformly with respect to $A, B\geq 0.$
Keywords:
int int x x y y linearized maximal operator rectangular partial sums kind double fourier series prove weak type r varepsilon estimate leq varepsilon uniformly respect geq
Affiliations des auteurs :
Elena Prestini 1
@article{10_4064_sm8182_10_2016,
author = {Elena Prestini},
title = {On the convergence of parabolically scaled two-dimensional {Fourier} series in the linear phase setting},
journal = {Studia Mathematica},
pages = {101--117},
publisher = {mathdoc},
volume = {237},
number = {2},
year = {2017},
doi = {10.4064/sm8182-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8182-10-2016/}
}
TY - JOUR AU - Elena Prestini TI - On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting JO - Studia Mathematica PY - 2017 SP - 101 EP - 117 VL - 237 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8182-10-2016/ DO - 10.4064/sm8182-10-2016 LA - en ID - 10_4064_sm8182_10_2016 ER -
%0 Journal Article %A Elena Prestini %T On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting %J Studia Mathematica %D 2017 %P 101-117 %V 237 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm8182-10-2016/ %R 10.4064/sm8182-10-2016 %G en %F 10_4064_sm8182_10_2016
Elena Prestini. On the convergence of parabolically scaled two-dimensional Fourier series in the linear phase setting. Studia Mathematica, Tome 237 (2017) no. 2, pp. 101-117. doi: 10.4064/sm8182-10-2016
Cité par Sources :