Rank, trace and determinant in Banach algebras: generalized Frobenius and Sylvester theorems
Studia Mathematica, Tome 229 (2015) no. 2, pp. 173-180

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

As a follow-up to a paper of Aupetit and Mouton (1996), we consider the spectral definitions of rank, trace and determinant applied to elements in a general Banach algebra. We prove a generalization of Sylvester's Determinant Theorem to Banach algebras and thereafter a generalization of the Frobenius inequality.
DOI : 10.4064/sm8157-12-2015
Keywords: follow up paper aupetit mouton consider spectral definitions rank trace determinant applied elements general banach algebra prove generalization sylvesters determinant theorem banach algebras thereafter generalization frobenius inequality

Gareth Braatvedt 1 ; Rudolf Brits 1 ; Francois Schulz 1

1 Department of Pure and Applied Mathematics University of Johannesburg Johannesburg, South Africa
@article{10_4064_sm8157_12_2015,
     author = {Gareth Braatvedt and Rudolf Brits and Francois Schulz},
     title = {Rank, trace and determinant in {Banach} algebras: generalized {Frobenius} and {Sylvester} theorems},
     journal = {Studia Mathematica},
     pages = {173--180},
     publisher = {mathdoc},
     volume = {229},
     number = {2},
     year = {2015},
     doi = {10.4064/sm8157-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8157-12-2015/}
}
TY  - JOUR
AU  - Gareth Braatvedt
AU  - Rudolf Brits
AU  - Francois Schulz
TI  - Rank, trace and determinant in Banach algebras: generalized Frobenius and Sylvester theorems
JO  - Studia Mathematica
PY  - 2015
SP  - 173
EP  - 180
VL  - 229
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8157-12-2015/
DO  - 10.4064/sm8157-12-2015
LA  - en
ID  - 10_4064_sm8157_12_2015
ER  - 
%0 Journal Article
%A Gareth Braatvedt
%A Rudolf Brits
%A Francois Schulz
%T Rank, trace and determinant in Banach algebras: generalized Frobenius and Sylvester theorems
%J Studia Mathematica
%D 2015
%P 173-180
%V 229
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8157-12-2015/
%R 10.4064/sm8157-12-2015
%G en
%F 10_4064_sm8157_12_2015
Gareth Braatvedt; Rudolf Brits; Francois Schulz. Rank, trace and determinant in Banach algebras: generalized Frobenius and Sylvester theorems. Studia Mathematica, Tome 229 (2015) no. 2, pp. 173-180. doi: 10.4064/sm8157-12-2015

Cité par Sources :