Unitary closure and Fourier algebra of a topological group
Studia Mathematica, Tome 231 (2015) no. 1, pp. 1-28
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This is a sequel to our recent work (2012) on the Fourier–Stieltjes algebra $ B(G) $ of a topological group $ G $. We introduce the unitary closure $ \overline G $ of $ G $ and use it to study the Fourier algebra $ A(G) $ of $ G $. We also study operator amenability and fixed point property as well as other related geometric properties for $ A(G) $.
Keywords:
sequel recent work fourier stieltjes algebra topological group introduce unitary closure overline study fourier algebra study operator amenability fixed point property other related geometric properties
Affiliations des auteurs :
Anthony To-Ming Lau 1 ; Jean Ludwig 2
@article{10_4064_sm8138_1_2016,
author = {Anthony To-Ming Lau and Jean Ludwig},
title = {Unitary closure and {Fourier} algebra of a topological group},
journal = {Studia Mathematica},
pages = {1--28},
publisher = {mathdoc},
volume = {231},
number = {1},
year = {2015},
doi = {10.4064/sm8138-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8138-1-2016/}
}
TY - JOUR AU - Anthony To-Ming Lau AU - Jean Ludwig TI - Unitary closure and Fourier algebra of a topological group JO - Studia Mathematica PY - 2015 SP - 1 EP - 28 VL - 231 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8138-1-2016/ DO - 10.4064/sm8138-1-2016 LA - en ID - 10_4064_sm8138_1_2016 ER -
Anthony To-Ming Lau; Jean Ludwig. Unitary closure and Fourier algebra of a topological group. Studia Mathematica, Tome 231 (2015) no. 1, pp. 1-28. doi: 10.4064/sm8138-1-2016
Cité par Sources :