$L^p$ compactness for Calderón type commutators
Studia Mathematica, Tome 237 (2017) no. 1, pp. 1-23
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We discuss the $L^p$ compactness of Calderón type commutators $T_A$ defined by
\begin{equation*}
T_Af(x)=\text{p.v. }\int_{\mathbb R^n} \frac{\varOmega(x-y)}{|x-y|^{n+1}} R(A;x,y)f(y)\,dy,
\end{equation*}
where $R(A;x,y)=A(x)-A(y)-\nabla A(y)\cdot(x-y)$ with $D^\beta A\in
\mathrm{BMO}(\mathbb R^n)$ for all $n\ge 2$ and $|\beta|=1$. Moreover, $\varOmega$ is
homogeneous of degree zero and has a vanishing moment of order one on
$\mathbb{S}^{n-1}$.
We prove that both $T_A$ and its maximal operator $T_{A,*}$ are
compact operators on $L^p(\mathbb R^n)$ for all $1 \lt p \lt \infty$ with $A$
satisfying some conditions. Moreover, the compactness of the
fractional operators $I_{\alpha,A,m}$ and $M_{\alpha,A,m}$ is proved.
Keywords:
discuss compactness calder type commutators defined begin equation* text int mathbb frac varomega x y x y y end equation* where y a nabla cdot x y beta mathrm bmo mathbb beta moreover varomega homogeneous degree zero has vanishing moment order mathbb n prove its maximal operator * compact operators mathbb infty satisfying conditions moreover compactness fractional operators alpha alpha proved
Affiliations des auteurs :
Ting Mei 1 ; Yong Ding 2
@article{10_4064_sm8088_9_2016,
author = {Ting Mei and Yong Ding},
title = {$L^p$ compactness for {Calder\'on} type commutators},
journal = {Studia Mathematica},
pages = {1--23},
publisher = {mathdoc},
volume = {237},
number = {1},
year = {2017},
doi = {10.4064/sm8088-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8088-9-2016/}
}
TY - JOUR AU - Ting Mei AU - Yong Ding TI - $L^p$ compactness for Calderón type commutators JO - Studia Mathematica PY - 2017 SP - 1 EP - 23 VL - 237 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8088-9-2016/ DO - 10.4064/sm8088-9-2016 LA - en ID - 10_4064_sm8088_9_2016 ER -
Ting Mei; Yong Ding. $L^p$ compactness for Calderón type commutators. Studia Mathematica, Tome 237 (2017) no. 1, pp. 1-23. doi: 10.4064/sm8088-9-2016
Cité par Sources :