1School of Ethnic Minority Education Beijing University of Posts and Telecommunications 100876 Beijing, P.R. China and School of Mathematical Sciences Beijing Normal University 100875 Beijing, P.R. China 2School of Mathematical Sciences Beijing Normal University 100875 Beijing, P.R. China
Studia Mathematica, Tome 237 (2017) no. 1, pp. 1-23
We discuss the $L^p$ compactness of Calderón type commutators $T_A$ defined by
\begin{equation*}
T_Af(x)=\text{p.v. }\int_{\mathbb R^n} \frac{\varOmega(x-y)}{|x-y|^{n+1}} R(A;x,y)f(y)\,dy,
\end{equation*}
where $R(A;x,y)=A(x)-A(y)-\nabla A(y)\cdot(x-y)$ with $D^\beta A\in
\mathrm{BMO}(\mathbb R^n)$ for all $n\ge 2$ and $|\beta|=1$. Moreover, $\varOmega$ is
homogeneous of degree zero and has a vanishing moment of order one on
$\mathbb{S}^{n-1}$.
We prove that both $T_A$ and its maximal operator $T_{A,*}$ are
compact operators on $L^p(\mathbb R^n)$ for all $1 \lt p \lt \infty$ with $A$
satisfying some conditions. Moreover, the compactness of the
fractional operators $I_{\alpha,A,m}$ and $M_{\alpha,A,m}$ is proved.
Keywords:
discuss compactness calder type commutators defined begin equation* text int mathbb frac varomega x y x y y end equation* where y a nabla cdot x y beta mathrm bmo mathbb beta moreover varomega homogeneous degree zero has vanishing moment order mathbb n prove its maximal operator * compact operators mathbb infty satisfying conditions moreover compactness fractional operators alpha alpha proved
Affiliations des auteurs :
Ting Mei 
1
;
Yong Ding 
2
1
School of Ethnic Minority Education Beijing University of Posts and Telecommunications 100876 Beijing, P.R. China and School of Mathematical Sciences Beijing Normal University 100875 Beijing, P.R. China
2
School of Mathematical Sciences Beijing Normal University 100875 Beijing, P.R. China
@article{10_4064_sm8088_9_2016,
author = {Ting Mei and Yong Ding},
title = {$L^p$ compactness for {Calder\'on} type commutators},
journal = {Studia Mathematica},
pages = {1--23},
year = {2017},
volume = {237},
number = {1},
doi = {10.4064/sm8088-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8088-9-2016/}
}
TY - JOUR
AU - Ting Mei
AU - Yong Ding
TI - $L^p$ compactness for Calderón type commutators
JO - Studia Mathematica
PY - 2017
SP - 1
EP - 23
VL - 237
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8088-9-2016/
DO - 10.4064/sm8088-9-2016
LA - en
ID - 10_4064_sm8088_9_2016
ER -
%0 Journal Article
%A Ting Mei
%A Yong Ding
%T $L^p$ compactness for Calderón type commutators
%J Studia Mathematica
%D 2017
%P 1-23
%V 237
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8088-9-2016/
%R 10.4064/sm8088-9-2016
%G en
%F 10_4064_sm8088_9_2016
Ting Mei; Yong Ding. $L^p$ compactness for Calderón type commutators. Studia Mathematica, Tome 237 (2017) no. 1, pp. 1-23. doi: 10.4064/sm8088-9-2016