$L^p$ compactness for Calderón type commutators
Studia Mathematica, Tome 237 (2017) no. 1, pp. 1-23

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss the $L^p$ compactness of Calderón type commutators $T_A$ defined by \begin{equation*} T_Af(x)=\text{p.v. }\int_{\mathbb R^n} \frac{\varOmega(x-y)}{|x-y|^{n+1}} R(A;x,y)f(y)\,dy, \end{equation*} where $R(A;x,y)=A(x)-A(y)-\nabla A(y)\cdot(x-y)$ with $D^\beta A\in \mathrm{BMO}(\mathbb R^n)$ for all $n\ge 2$ and $|\beta|=1$. Moreover, $\varOmega$ is homogeneous of degree zero and has a vanishing moment of order one on $\mathbb{S}^{n-1}$. We prove that both $T_A$ and its maximal operator $T_{A,*}$ are compact operators on $L^p(\mathbb R^n)$ for all $1 \lt p \lt \infty$ with $A$ satisfying some conditions. Moreover, the compactness of the fractional operators $I_{\alpha,A,m}$ and $M_{\alpha,A,m}$ is proved.
DOI : 10.4064/sm8088-9-2016
Keywords: discuss compactness calder type commutators defined begin equation* text int mathbb frac varomega x y x y y end equation* where y a nabla cdot x y beta mathrm bmo mathbb beta moreover varomega homogeneous degree zero has vanishing moment order mathbb n prove its maximal operator * compact operators mathbb infty satisfying conditions moreover compactness fractional operators alpha alpha proved

Ting Mei 1 ; Yong Ding 2

1 School of Ethnic Minority Education Beijing University of Posts and Telecommunications 100876 Beijing, P.R. China and School of Mathematical Sciences Beijing Normal University 100875 Beijing, P.R. China
2 School of Mathematical Sciences Beijing Normal University 100875 Beijing, P.R. China
@article{10_4064_sm8088_9_2016,
     author = {Ting Mei and Yong Ding},
     title = {$L^p$ compactness for {Calder\'on} type commutators},
     journal = {Studia Mathematica},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {237},
     number = {1},
     year = {2017},
     doi = {10.4064/sm8088-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8088-9-2016/}
}
TY  - JOUR
AU  - Ting Mei
AU  - Yong Ding
TI  - $L^p$ compactness for Calderón type commutators
JO  - Studia Mathematica
PY  - 2017
SP  - 1
EP  - 23
VL  - 237
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8088-9-2016/
DO  - 10.4064/sm8088-9-2016
LA  - en
ID  - 10_4064_sm8088_9_2016
ER  - 
%0 Journal Article
%A Ting Mei
%A Yong Ding
%T $L^p$ compactness for Calderón type commutators
%J Studia Mathematica
%D 2017
%P 1-23
%V 237
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8088-9-2016/
%R 10.4064/sm8088-9-2016
%G en
%F 10_4064_sm8088_9_2016
Ting Mei; Yong Ding. $L^p$ compactness for Calderón type commutators. Studia Mathematica, Tome 237 (2017) no. 1, pp. 1-23. doi: 10.4064/sm8088-9-2016

Cité par Sources :