The order topology for a von Neumann algebra
Studia Mathematica, Tome 230 (2015) no. 2, pp. 95-120

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The order topology $\tau _o(P)$ (resp. the sequential order topology $\tau _{os}(P)$) on a poset $P$ is the topology that has as its closed sets those that contain the order limits of all their order convergent nets (resp. sequences). For a von Neumann algebra $M$ we consider the following three posets: the self-adjoint part $M_{sa}$, the self-adjoint part of the unit ball $M_{sa}^1$, and the projection lattice $P(M)$. We study the order topology (and the corresponding sequential variant) on these posets, compare the order topology to the other standard locally convex topologies on $M$, and relate the properties of the order topology to the underlying operator-algebraic structure of $M$.
DOI : 10.4064/sm8041-1-2016
Mots-clés : order topology tau resp sequential order topology tau poset topology has its closed sets those contain order limits their order convergent nets resp sequences von neumann algebra consider following three posets self adjoint part self adjoint part unit ball projection lattice study order topology corresponding sequential variant these posets compare order topology other standard locally convex topologies relate properties order topology underlying operator algebraic structure

Emmanuel Chetcuti 1 ; Jan Hamhalter 2 ; Hans Weber 3

1 Department of Mathematics Faculty of Science University of Malta Msida, Malta
2 Faculty of Electrical Engineering Czech Technical University in Prague Technicka 2 166 27, Praha 6, Czech Republic
3 Dipartimento di matematica e informatica Università degli Studi di Udine 1-33100 Udine, Italy
@article{10_4064_sm8041_1_2016,
     author = {Emmanuel Chetcuti and Jan Hamhalter and Hans Weber},
     title = {The order topology for a von {Neumann} algebra},
     journal = {Studia Mathematica},
     pages = {95--120},
     publisher = {mathdoc},
     volume = {230},
     number = {2},
     year = {2015},
     doi = {10.4064/sm8041-1-2016},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8041-1-2016/}
}
TY  - JOUR
AU  - Emmanuel Chetcuti
AU  - Jan Hamhalter
AU  - Hans Weber
TI  - The order topology for a von Neumann algebra
JO  - Studia Mathematica
PY  - 2015
SP  - 95
EP  - 120
VL  - 230
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8041-1-2016/
DO  - 10.4064/sm8041-1-2016
LA  - de
ID  - 10_4064_sm8041_1_2016
ER  - 
%0 Journal Article
%A Emmanuel Chetcuti
%A Jan Hamhalter
%A Hans Weber
%T The order topology for a von Neumann algebra
%J Studia Mathematica
%D 2015
%P 95-120
%V 230
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8041-1-2016/
%R 10.4064/sm8041-1-2016
%G de
%F 10_4064_sm8041_1_2016
Emmanuel Chetcuti; Jan Hamhalter; Hans Weber. The order topology for a von Neumann algebra. Studia Mathematica, Tome 230 (2015) no. 2, pp. 95-120. doi: 10.4064/sm8041-1-2016

Cité par Sources :