The order topology for a von Neumann algebra
Studia Mathematica, Tome 230 (2015) no. 2, pp. 95-120
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The order topology $\tau _o(P)$ (resp. the sequential order topology $\tau _{os}(P)$) on a poset $P$ is the topology that has as its closed sets those that contain the order limits of all their order convergent nets (resp. sequences). For a von Neumann algebra $M$ we consider the following three posets: the self-adjoint part $M_{sa}$, the self-adjoint part of the unit ball $M_{sa}^1$, and the projection lattice $P(M)$. We study the order topology (and the corresponding sequential variant) on these posets, compare the order topology to the other standard locally convex topologies on $M$, and relate the properties of the order topology to the underlying operator-algebraic structure of $M$.
Mots-clés :
order topology tau resp sequential order topology tau poset topology has its closed sets those contain order limits their order convergent nets resp sequences von neumann algebra consider following three posets self adjoint part self adjoint part unit ball projection lattice study order topology corresponding sequential variant these posets compare order topology other standard locally convex topologies relate properties order topology underlying operator algebraic structure
Affiliations des auteurs :
Emmanuel Chetcuti 1 ; Jan Hamhalter 2 ; Hans Weber 3
@article{10_4064_sm8041_1_2016,
author = {Emmanuel Chetcuti and Jan Hamhalter and Hans Weber},
title = {The order topology for a von {Neumann} algebra},
journal = {Studia Mathematica},
pages = {95--120},
publisher = {mathdoc},
volume = {230},
number = {2},
year = {2015},
doi = {10.4064/sm8041-1-2016},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8041-1-2016/}
}
TY - JOUR AU - Emmanuel Chetcuti AU - Jan Hamhalter AU - Hans Weber TI - The order topology for a von Neumann algebra JO - Studia Mathematica PY - 2015 SP - 95 EP - 120 VL - 230 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8041-1-2016/ DO - 10.4064/sm8041-1-2016 LA - de ID - 10_4064_sm8041_1_2016 ER -
Emmanuel Chetcuti; Jan Hamhalter; Hans Weber. The order topology for a von Neumann algebra. Studia Mathematica, Tome 230 (2015) no. 2, pp. 95-120. doi: 10.4064/sm8041-1-2016
Cité par Sources :