Let $X,Y$ be Banach spaces, $f:X\rightarrow Y$ be an isometry with $f(0)=0$, and $T:\overline {\rm span}(f(X))\rightarrow X$ be the Figiel operator with $T\circ f={\rm Id}_X$ and $\|T\| =1$. We present a sufficient and necessary condition for the Figiel operator $T$ to admit a linear isometric right inverse. We also prove that such a right inverse exists when $\overline {\rm span}(f(X))$ is weakly nearly strictly convex.
@article{10_4064_sm8036_12_2015,
author = {Yu Zhou and Zihou Zhang and Chunyan Liu},
title = {Linearization of isometric embedding on {Banach} spaces},
journal = {Studia Mathematica},
pages = {31--39},
year = {2015},
volume = {230},
number = {1},
doi = {10.4064/sm8036-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8036-12-2015/}
}
TY - JOUR
AU - Yu Zhou
AU - Zihou Zhang
AU - Chunyan Liu
TI - Linearization of isometric embedding on Banach spaces
JO - Studia Mathematica
PY - 2015
SP - 31
EP - 39
VL - 230
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8036-12-2015/
DO - 10.4064/sm8036-12-2015
LA - en
ID - 10_4064_sm8036_12_2015
ER -
%0 Journal Article
%A Yu Zhou
%A Zihou Zhang
%A Chunyan Liu
%T Linearization of isometric embedding on Banach spaces
%J Studia Mathematica
%D 2015
%P 31-39
%V 230
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8036-12-2015/
%R 10.4064/sm8036-12-2015
%G en
%F 10_4064_sm8036_12_2015
Yu Zhou; Zihou Zhang; Chunyan Liu. Linearization of isometric embedding on Banach spaces. Studia Mathematica, Tome 230 (2015) no. 1, pp. 31-39. doi: 10.4064/sm8036-12-2015