Unitarily invariant norms related to semi-finite factors
Studia Mathematica, Tome 229 (2015) no. 1, pp. 13-44
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal M$ be a semi-finite factor and let $\mathcal J(\mathcal M)$ be the set of operators $T$ in $\mathcal M$ such that $T=ETE$ for some finite projection $E$. We obtain a representation theorem for unitarily invariant norms on $\mathcal J(\mathcal M)$ in terms of Ky Fan norms. As an application, we prove that the class of unitarily invariant norms on $\mathcal J(\mathcal M)$ coincides with the class of symmetric gauge norms on a classical abelian algebra, which generalizes von Neumann's classical 1940 result on unitarily invariant norms on $M_n(\mathbb C)$. As another application, Ky Fan's dominance theorem of 1951 is obtained for semi-finite factors.
Keywords:
mathcal semi finite factor mathcal mathcal set operators mathcal ete finite projection obtain representation theorem unitarily invariant norms mathcal mathcal terms fan norms application prove class unitarily invariant norms mathcal mathcal coincides class symmetric gauge norms classical abelian algebra which generalizes von neumanns classical result unitarily invariant norms mathbb another application fans dominance theorem nbsp obtained semi finite factors
Affiliations des auteurs :
Junsheng Fang 1 ; Don Hadwin 2
@article{10_4064_sm8019_12_2015,
author = {Junsheng Fang and Don Hadwin},
title = {Unitarily invariant norms related to semi-finite factors},
journal = {Studia Mathematica},
pages = {13--44},
publisher = {mathdoc},
volume = {229},
number = {1},
year = {2015},
doi = {10.4064/sm8019-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8019-12-2015/}
}
TY - JOUR AU - Junsheng Fang AU - Don Hadwin TI - Unitarily invariant norms related to semi-finite factors JO - Studia Mathematica PY - 2015 SP - 13 EP - 44 VL - 229 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm8019-12-2015/ DO - 10.4064/sm8019-12-2015 LA - en ID - 10_4064_sm8019_12_2015 ER -
Junsheng Fang; Don Hadwin. Unitarily invariant norms related to semi-finite factors. Studia Mathematica, Tome 229 (2015) no. 1, pp. 13-44. doi: 10.4064/sm8019-12-2015
Cité par Sources :