Unitarily invariant norms related to semi-finite factors
Studia Mathematica, Tome 229 (2015) no. 1, pp. 13-44

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal M$ be a semi-finite factor and let $\mathcal J(\mathcal M)$ be the set of operators $T$ in $\mathcal M$ such that $T=ETE$ for some finite projection $E$. We obtain a representation theorem for unitarily invariant norms on $\mathcal J(\mathcal M)$ in terms of Ky Fan norms. As an application, we prove that the class of unitarily invariant norms on $\mathcal J(\mathcal M)$ coincides with the class of symmetric gauge norms on a classical abelian algebra, which generalizes von Neumann's classical 1940 result on unitarily invariant norms on $M_n(\mathbb C)$. As another application, Ky Fan's dominance theorem of 1951 is obtained for semi-finite factors.
DOI : 10.4064/sm8019-12-2015
Keywords: mathcal semi finite factor mathcal mathcal set operators mathcal ete finite projection obtain representation theorem unitarily invariant norms mathcal mathcal terms fan norms application prove class unitarily invariant norms mathcal mathcal coincides class symmetric gauge norms classical abelian algebra which generalizes von neumanns classical result unitarily invariant norms mathbb another application fans dominance theorem nbsp obtained semi finite factors

Junsheng Fang 1 ; Don Hadwin 2

1 School of Mathematical Sciences Dalian University of Technology Dalian, China, 116024
2 Department of Mathematics University of New Hampshire Durham, NH 03824, U.S.A.
@article{10_4064_sm8019_12_2015,
     author = {Junsheng Fang and Don Hadwin},
     title = {Unitarily invariant norms related to semi-finite factors},
     journal = {Studia Mathematica},
     pages = {13--44},
     publisher = {mathdoc},
     volume = {229},
     number = {1},
     year = {2015},
     doi = {10.4064/sm8019-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm8019-12-2015/}
}
TY  - JOUR
AU  - Junsheng Fang
AU  - Don Hadwin
TI  - Unitarily invariant norms related to semi-finite factors
JO  - Studia Mathematica
PY  - 2015
SP  - 13
EP  - 44
VL  - 229
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm8019-12-2015/
DO  - 10.4064/sm8019-12-2015
LA  - en
ID  - 10_4064_sm8019_12_2015
ER  - 
%0 Journal Article
%A Junsheng Fang
%A Don Hadwin
%T Unitarily invariant norms related to semi-finite factors
%J Studia Mathematica
%D 2015
%P 13-44
%V 229
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm8019-12-2015/
%R 10.4064/sm8019-12-2015
%G en
%F 10_4064_sm8019_12_2015
Junsheng Fang; Don Hadwin. Unitarily invariant norms related to semi-finite factors. Studia Mathematica, Tome 229 (2015) no. 1, pp. 13-44. doi: 10.4064/sm8019-12-2015

Cité par Sources :