Noncommutative fractional integrals
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 229 (2015) no. 2, pp. 113-139
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              
Let $\mathcal M$ be a hyperfinite finite von Nemann algebra and $(\mathcal M_k)_{k\geq 1}$ be an increasing filtration of finite-dimensional von Neumann subalgebras of $\mathcal M$. We investigate abstract fractional integrals associated to the filtration $(\mathcal M_k)_{k\geq 1}$. For a finite noncommutative martingale $x=(x_k)_{1\leq k\leq n} \subseteq L_1(\mathcal M)$ adapted to $(\mathcal M_k)_{k\geq 1}$ and $0 \lt \alpha \lt 1$, the fractional integral of $x$ of order $\alpha$ is defined by setting
$$
I^\alpha x = \sum_{k=1}^n \zeta_k^{\alpha } dx_k
$$
for an appropriate sequence $(\zeta_k)_{k\geq 1}$ of scalars. For the case of a noncommutative dyadic martingale in $L_1(\mathcal R)$ where $\mathcal R$ is the type ${\rm II}_1$ hyperfinite factor equipped with its natural increasing filtration, $\zeta_k=2^{-k}$ for $k\geq 1$.
We prove that $I^\alpha$ is of weak type $(1, 1/(1-\alpha))$. More precisely, there is a constant ${\mathrm c}$ depending only on $\alpha$ such that if $x=(x_k)_{k\geq 1}$ is a finite noncommutative martingale in $L_1(\mathcal M)$ then
$$
\|I^\alpha x\|_{L_{1/(1-\alpha),\infty}({\mathcal M})}\leq {\mathrm c}\|x\|_{L_1(\mathcal M)}.
$$
We also show that $I^\alpha$ is bounded from $L_{p}(\mathcal M)$ into $L_{q}(\mathcal M)$ where $1 \lt p \lt q \lt \infty$ and $\alpha=1/p-1/q$, thus providing a noncommutative analogue of a classical result. Furthermore, we investigate the corresponding result for noncommutative martingale Hardy spaces. Namely, there is a constant ${\mathrm c}$ depending only on $\alpha$ such that if $x=(x_k)_{k\geq 1}$ is a finite noncommutative martingale in the martingale Hardy space $\mathcal{H}_1(\mathcal M)$ then
$\|I^\alpha x\|_{\mathcal{H}_{1/(1-\alpha)}(\mathcal M)}\leq {\mathrm c} \|x\|_{\mathcal{H}_1(\mathcal M)}$.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
mathcal hyperfinite finite von nemann algebra mathcal geq increasing filtration finite dimensional von neumann subalgebras mathcal investigate abstract fractional integrals associated filtration mathcal geq finite noncommutative martingale leq leq subseteq mathcal adapted mathcal geq alpha fractional integral order alpha defined setting alpha sum zeta alpha appropriate sequence zeta geq scalars noncommutative dyadic martingale mathcal where mathcal type hyperfinite factor equipped its natural increasing filtration zeta k geq prove alpha weak type alpha precisely there constant mathrm depending only alpha geq finite noncommutative martingale mathcal alpha alpha infty mathcal leq mathrm mathcal alpha bounded mathcal mathcal where infty alpha p providing noncommutative analogue classical result furthermore investigate corresponding result noncommutative martingale hardy spaces namely there constant mathrm depending only alpha geq finite noncommutative martingale martingale hardy space mathcal mathcal alpha mathcal alpha mathcal leq mathrm mathcal mathcal
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Narcisse Randrianantoanina 1 ; Lian Wu 2
@article{10_4064_sm7989_1_2016,
     author = {Narcisse Randrianantoanina and Lian Wu},
     title = {Noncommutative fractional integrals},
     journal = {Studia Mathematica},
     pages = {113--139},
     publisher = {mathdoc},
     volume = {229},
     number = {2},
     year = {2015},
     doi = {10.4064/sm7989-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm7989-1-2016/}
}
                      
                      
                    TY - JOUR AU - Narcisse Randrianantoanina AU - Lian Wu TI - Noncommutative fractional integrals JO - Studia Mathematica PY - 2015 SP - 113 EP - 139 VL - 229 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm7989-1-2016/ DO - 10.4064/sm7989-1-2016 LA - en ID - 10_4064_sm7989_1_2016 ER -
Narcisse Randrianantoanina; Lian Wu. Noncommutative fractional integrals. Studia Mathematica, Tome 229 (2015) no. 2, pp. 113-139. doi: 10.4064/sm7989-1-2016
Cité par Sources :